Проблемы Эволюции

Проблемы Эволюции

Микробные сообщества щелочных гидротерм

Намсараев Н. М.

Избранные главы из диссертации на соискание ученой степени кандидата биологических наук. 2003.

 

намсараев Зоригто Баирович

Микробные сообщества щелочных гидротерм.

Избранные главы из диссертации на соискание ученой степени кандидата биологических наук

 Москва – 2003

1.2. Распространение и состав микробных сообществ в зависимости от физико-химических факторов среды 

В термальных источниках распространение эукариот ограничено 45-55ºС (Brock, 1967а; Castenholz, 1969; Wickstrom, Castenholz, 1985). Поэтому микробные сообщества гидротерм представляют значительный интерес с точки зрения эволюции биосферы и, по мнению многих исследователей, являются аналогами сообществ, доминировавших на ранних этапах развития жизни на Земле (Заварзин, 1972а, 1997, 2001; Baross, Hoffman, 1985; Nisbet, 1986; Walter et al., 1998).

Микробные сообщества гидротерм можно разделить на два типа: с доминированием фототрофных микроорганизмов и с доминированием хемотрофных микроорганизмов. Хемотрофные сообщества часто развиваются в виде обрастаний. Фототрофные сообщества в гидротермах, при отсутствии выедания со стороны эукариотных организмов, могут обладать значительной биомассой и образовывать микробные маты - органоминеральные структуры, отличающиеся от бактериальных обрастаний своей оструктуренностью (слоистостью) (Cohen et al., 1989). Граница между фототрофными и хемотрофными сообществами определяется, по-видимому, устойчивостью фотосинтетического аппарата к факторам окружающей среды, в первую очередь к температуре (Brock, 1978). В источниках с рН 5-10 верхняя температурная граница распространения фототрофного микробного мата расположена при 61-73ºС. В кислых гидротермах с рН 1-5 развитые маты встречаются только при температурах ниже 55ºС и образованы из эукариотической водоросли Cyanidium caldarium (Castenholz, 1969, 1984; Hiraishi et al., 1999). При более высоких температурах, либо при отсутствии света развиваются хемотрофные сообщества.  

1.2.1. Микробные сообщества щелочных гидротерм 

Фототрофные микробные сообщества были исследованы на щелочных гидротермах Байкальской и Восточно-Африканской рифтовых зон. Показано, что в микробных матах пресных источников Байкальской рифтовой зоны присутствуют цианобактерии и аноксигенные фототрофные бактерии (АФБ). Так, по изливу источника Котельниковский (рН 9.2-9.8, Т 60°С, сульфид 6 мг/л) развивается три типа матов. При температуре 50-60°С доминируют нитчатая цианобактерия Phormidium sp. и термофильная нитчатая АФБ Chloroflexus aurantiacus, при 50-45°С доминируют нитчатые цианобактерии Oscillatoria sp. и Phormidium sp., в меньшем количестве представлены одноклеточные цианобактерии Synechococcus sp. и Gloeocapsa sp. При температуре 25-35°С на смешении термальных вод и вод озера Байкал развиваются обрастания  Thiotrix sp. Численность Chloroflexus aurantiacus учтенная методом посева не превышала 104 кл/мл, несерных пурпурных бактерий Rhodopseudomonas palustris – 105 кл/мл, Rh. gelatinosus – 105 кл/мл (Горленко и др., 1985; Компанцева, Горленко, 1988). Также из источников Б.р.з. (Республика Бурятия: источники Ильинский, Аллинский, Кучигерский, Сеюйский, Гаргинский) с рН 8-9 были выделены культуры Meiothermus ruber и, в меньшем количестве, Thermus flavus. Также представлены спорообразующие формы и целлюлозолитические бактерии с оптимумом развития при температуре 50°С и рН 8 (Храпцова и др., 1984). 

На Большереченском источнике (Т 72-74°С, рН 9,25, сульфид 13.4 мг/л) в зоне излива фототрофные микробные маты отсутствуют. Высказано предположение, что это связано с одновременным присутствием сульфида и кислорода в воде источника. В микробных матах источника доминируют нитчатые цианобактерии рода Phormidium, также из матов был выделен ряд неизвестных ранее аноксигенных фототрофных бактерий (Юрков, Горленко, 1989, 1990, 1991, 1992; Юрков и др., 1992). Более подробная информация о микробном сообществе Большереченского источника приведена в разделе “Результаты”.

В зоне Восточно-Африканского рифта были исследованы микробные сообщества развивающиеся по изливу гидротерм около озера Богория (Кения, рН 8.5-9.5, Т 35-100ºС, минерализация до 3.5 мг/л). В составе матов доминируют цианобактерии Synechococcus bigranulatus, Spirulina subsalsa, Phormidium terebriformis, Oscillatoria willei (Krienitz et al., 2003). Также в значительном количестве присутствует Chloroflexus sp. (Grant, Tindall, 1986). Из источников было выделено два штамма “Thermopallium natronophilum”, принадлежащих к порядку Thermotogales (Duckworth et al., 1996).  

Хемотрофные микробные сообщества в виде обрастаний были обнаружены в источнике Боулдер спринг (Йеллоустон) при температуре 90-93°С, рН 8.9 и содержании сульфида 3 мг/л. При исследовании стекол обрастания были обнаружены миксотрофные сероокисляющие бактерии, использующие ацетат (Brock et al., 1971).

В источниках Накабуса (Япония) хемотрофные микробные обрастания развивались при температурах 76-66ºС, рН 8.5 и 8.7, содержании сульфида 2.5 и 0.9 мг/л. В составе сообщества по данным DGGE доминировали представители Thermodesulfobacteria sp., Thermus sp., Staphylothermus marinus, Sulphobococcus zilligii. Представители Aquifex доминировали в одном из источников Накабуса с рН 7.3, но в щелочных источниках обнаружены в малом количестве (Nakagawa, Fukui, 2002). . Также из мата были выделены культуры Roseiflexus castenholzii и Chloroflexus aurantiacus (Hanada et al., 2002).

В пробах из гейзера Удачный (долина Гейзеров, Камчатка) с рН 8.5, азотного типа, было зафиксировано литотрофное образование метана при 60ºС, в полученных накопительных культурах доминировали тонкие палочки фенотипически сходные с Methanobacterium thermoautotrophicum (Бонч-Осмоловская и др., 1999). 

Из субаквальных гидротерм изливающихся на литорали фьорда Эйджафьордур (Исландия) с рН 10, температурой 71ºС, минерализацией 291 мг/л и содержанием сульфида 0.32 мг/л было выделено 50 штаммов аэробных бактерий. Все штаммы способны к росту при 60-65ºС и рН 9.0, 20 штаммов способны расти при рН 10. По результатам анализа 16S-рРНК бактерии были отнесены к видам Geobacillus thermoleovorans, “G. caldotenax”, G. flavothermus, G. caldovelox, G. thermodenitrificans, G. caldoxylozilyticus и Thermonema sp. (Marteinsson et al., 2001). Примечательно, что типовые штаммы данных организмов не способны расти при рН выше 8 (Назина, Григорьян – личное сообщение). Также был выделен анаэробный организм, археобактерия Desulfurococcus mobilis (Marteinsson et al., 2001). Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что большинство последовательностей принадлежат эубактериям (45 клонов), археобактерии представлены 10 клонами (Korarchaeota). Большинство эубактериальных клонов (31 клон) относятся к группе  Aquificales, из них к Hydrogenobacter thermophilus принадлежит 15 клонов. Также были обнаружены последовательности принадлежащие к группам Nitrospira, Firmicutes (Propionibacterium acnes), б-Proteobacteria (Caulobacter crescentus), в-Proteobacteria (Alcaligens sp.). Представители рода Thermus не были обнаружены (Marteinsson et al., 2001).  

1.2.2. Микробные сообщества нейтральных гидротерм 

Фототрофные микробные сообщества нейтральных гидротерм исследованы более подробно чем сообщества щелочных гидротерм. Данные сообщества могут быть разделены на два типа: маты с доминированием цианобактерий (цианобактериальные маты) и маты с доминированием АФБ (“Аноксигенные маты”).

Кастенхольц выделяет несколько основных типов цианобактериальных матов  в зависимости от особенностей их строения (Castenholz, 1984).

1) Мат с “обычной вертикальной последовательностью” доминирует в гидротермах с содержанием сульфида менее 1 мг/л в широком диапазоне температур (до 73ºС). В верхнем слое толщиной 1-2 мм доминируют термофильные цианобактерии, в нижнем слое, как правило, доминирует термофильные нитчатые АФБ (Castenholz, 1984; Ramsing et al., 2000; Nubel et al., 2002). Благодаря различающемуся составу пигментов, поглощающих свет разных длин волн, слои не затеняют друг друга, и фотосинтез может происходить до глубины 3-4 мм. Под матом расположена зона деструкции, с доминированием сульфатредукторов или метаногенов. В микробном мате источника Октопус спринг значительной численности достигает термофильная цианобактерия Synechococcus lividus (до 1010 кл/мл), бродильщик Thermobacteroides acetoethylicus (до 107 кл/мл) и метаноген Methanobacterium thermoautotrophicum (до 107 кл/мл). Меньшей численности достигают бродильщики Clostridium thermohydrosulphuricum и C. thermosulfurogenes (до 103 кл/мл) (Bauld, Brock, 1974; Wiegel et al., 1979; Zeikus et al., 1980; Ben-Bassat, Zeikus, 1981; Schink, Zeikus, 1983; Ward et al., 1998). Также из микробного мата были выделены АФБ Chloroflexus aurantiacus, Heliotrix oregonensis, Roseiflexis castenholzii и Heliobacterium modesticaldum, аэробные хемоорганототрофные бактерии Thermomicrobium roseum, Isosphaera pallida, Thermus aquaticus, Meiothermus ruber, бродильщики Thermoanaerobacter brockii, Th. ethanolicus, Thermoanaerobacterium thermosulfurigenes, Moorella thermoautotrophica, сульфатредуцирующая бактерия Thermodesulfotobacterium commune (Ward et al., 1998). Анализ выделенной из природных образцов нативной ДНК с помощью 16S рРНК-ориентированных праймеров и зондов разной степени специфичности показал, что наибольшее число последовательностей принадлежит цианобактерии Synechococcus lividus (около 30%), также в мате обнаружены последовательности принадлежащие цианобактериям Oscillatoria amphigranulata, Pseudoanabaena galeata. Значительное количество последовательностей принадлежит к некультивируемым видам. Интересно, что генетические методы показали большее разнообразие популяций Synechococcus и Chloroflexus чем считалось ранее. В мате присутствует одновременно до 3-9 популяций, принадлежащих к одному роду или виду (Bateson et al., 1989; Weller et al., 1992; Ferris et al., 1996; Ward et al., 1998; Nubel et al., 2002).

2) Особенностью “перевернутых матов” является расположение слоя АФБ над слоем цианобактерий. Образование этого типа мата связано с способностью некоторых АФБ существовать в аэробных условиях. Heliotrix oregonensis, не обладающий хлоросомами и нуждающийся в более высокой интенсивности света  чем близкородственный Chloroflexus aurantiacus, образует поверхностный слой мата над слоем цианобактерий в слабощелочных бессульфидных (Варм спрингс: рН 8.5, Т 35-56ºС, сульфид - менее 1 мг/л, кислород - 6 мг/л) гидротермах Орегона (США) (Castenholz, 1984; Pierson et al., 1984). Образование “перевернутого мата” также может быть связано с большей толерантностью АФБ к сульфиду чем цианобактерий (Ward et al. 1989). В источнике Йистихвер спринг (Исландия) при температуре 58-60ºС, рН около 8.5 и содержании сульфида 1.3-2 мг/л развивается микробный мат, в котором Chloroflexus sp. развивается над слоем цианобактерии Chlorogloeopsis sp. При этом Chloroflexus sp. использует сульфид содержащийся в воде источника и тем самым создает нишу для развития Chlorogloeopsis sp. чувствительной к сульфиду и осуществляющей оксигенный фотосинтез (Jorgensen et al., 1988). Аналогичный тип мата обнаружен в источнике Термофильный в кальдере Узон при температуре 60-62ºС и содержании сульфида 7.7-8.5 мг/л. В нем под слоем АФБ  Chloroflexus aurantiacus расположен слой с доминированием цианобактерий Phormidium sp. и Synechococcus lividus (Горленко, Бонч-Осмоловская, 1989).

3) “Прозрачные маты” развиваются при температурах около 45ºС и отличаются от других значительной толщиной (до 5-6 см). По мнению Кастенхольца (Castenholz, 1984) его развитие возможно благодаря тому, что кальцификация, отложение кремния или резко изменяющаяся температура воды препятствовуют развитию эукариотных организмов разрушающих мат. В составе мата доминируют цианобактерии рода Phormidium, образующие большие количества прозрачного полисахаридного геля и относительно небольшое количество хлорофилла. Это позволяет свету проникать на глубину до 1.5 см и фотосинтез происходит на больших глубинах чем в матах с доминированием Synechococcus lividus  (Castenholz, 1984). 

Особенностью “аноксигенных матов” является отсутствие, либо незначительное количество цианобактерий в составе микробного мата. Существование подобных матов имеет эволюционное значение, так как показывает, что образование древнейших строматолитов могло быть не связанным с цианобактериями и оксигенным фотосинтезом (Ward et al., 1989). Вард с соавторами выделяют несколько типов “аноксигенных матов” в зависимости от доминирующей в составе мата АФБ (Ward et al., 1989).

1) “Мат Chloroflexus”. Микробные маты с доминированием Chloroflexus aurantiacus развиваются в сульфидсодержащих гидротермах (более 1 мг/л) при температурах выше 50ºС. Это источники  Нью Пит Спринг (Йеллоустон) температура развития мата 52-58ºС, рН 6.3, содержание сульфида 1 мг/л; Маммот спринг (Йеллоустон), температура 50-65ºС, содержание сульфида 1.5-8 мг/л, рН 6.2-6.8; Бадстофухвер (Исландия) с температурой развития мата 65-70ºС, рН 8.3 и содержанием сульфида 1 мг/л (Giovannoni et al., 1987; Madigan et al., 1989; Ward et al., 1989; Skirnisdottir et al., 2000). Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что в мате развивающемся в источнике Бадстофухвер цианобактерии представлены в небольшом количестве (2 клона из 123, около 1%). 45% клонов было близко Chloroflexus aurantiacus, который, очевидно, является первичным продуцентом в этом мате. Следующими, по убыванию встречаемости клонов, были группы: Aquificales (Calderobacterium hydrogenophilum, Thermocrinis ruber), Thermus-Deinococcus (Thermus sp.), Meiothermus (Meiothermus ruber), Nitrospira (Thermodesulfovibrio sp.), Thermotogales (Fervidobacterium gondwanalandicum), Stigonematales (Chlorogloeopsis sp.), Proteobacteria (Craurococcus roseus, Thiobacillus hydrothermalis). 4 выделенных клона не могли быть отнесены к каким-либо известным группам (Skirnisdottir et al., 2000).

2) “Мат Chromatium”. Мат с доминированием Chromatium tepidum развивается при более низких температурах и обнаружен в источнике Роландс велл (Йеллоустон), температура развития мата 52-55ºС, рН 6.3, содержание сульфида 1.3 мг/л (Madigan et al., 1989; Ward et al., 1989).

3) “Мат Chlorobium”. Мат с доминированием Chlorobium tepidum обнаружен в источнике Травелодж стрим (Новая Зеландия), температура 42-56ºС, рН 5.3-7.1, содержание сульфида 9-27 мг/л (Ward et al., 1989; Castenholz et al., 1990).

 

Доминирование в составе микробного мата в одних случаях аноксигенных, а в других случаях оксигенных фототрофных бактерий Кастенхольц связывает с различным содержанием сульфида в воде гидротерм. По его мнению,  содержание сульфида выше 0.96-1.92 мг/л при рН 6-10 и температуре выше 55ºС полностью исключает развитие цианобактерий и создает условия для доминирования АФБ (Castenholz, 1984). Тем не менее, эта гипотеза не объясняет, почему в источниках с высоким содержанием сульфида и высокой температурой (Термофильный и Ийстихвер спринг) цианобактерии развиваются в большом количестве под слоем АФБ и чисто “аноксигенного” мата не возникает.

 

В термофильных хемотрофных сообществах первичными продуцентами являются  хемолитоавтотрофные микроорганизмы циклов серы и железа (Бонч-Осмоловская, Заварзин, 1989; Jannasch, Mottl, 1985; Moyer et al., 1995; Kashefi et al., 2002). При температуре 65-93ºС, рН от 6.7 до 8.3, содержании сульфида свыше 1 мг/л развивается микробное сообщество с доминированием микроаэрофильных хемолитотрофных микроорганизмов, часто образующих космы белого цвета с выпадением глобул элементной серы на поверхности. Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что в исследованных гидротермах 27-74% последовательностей принадлежит представителям группы Aquifex-Hydrogenobacter, способных к аэробному хемолитотрофному росту используя водород и соединения серы в качестве доноров электронов. Второй по значимости группой являются представители Proteobacteria. В меньших количествах представлены последовательности принадлежащие  Thermodesulfobacterium, Thermodesulfovibrio, Thermus, Thermotogales, зеленым несерным бактериям. До 30% эубактериальных последовательностей принадлежит неизвестным группам организмов. Из представителей археобактерий были обнаружены последовательности близкие к представителям родов Pyrobaculum, Pyrodictium, Thermophilum, Archaeoglobus, Desulfurococcus и последовательности принадлежащие к группе Korarchaeota (до 77% клонов археобактерий) (Barns et al., 1994; Barns et al., 1996; Blank et al., 2002; Huber et al., 1998; Hugenholtz et al., 1998; Skirnisdottir, 2000; Reysenbach et al. 1994; Yamamoto et al., 1998; Reysenbach et al., 2000а).

О сообществе Thermothrix известно немного. Было показано, что в гидротермах с температурой 65-85°С, рН около 7 и содержанием сульфида свыше 1 мг/л развивается сообщество основанное на жизнедеятельности Thermothrix thiopara или Thermotrix azorensis Эти бактерии, относящиеся к β-Proteobacteria, окисляют глубинный сероводород до элементной серы, которая откладывается на поверхности бактериальных обрастаний, приобретающих вид белых “косм” (Бонч-Осмоловская и др., 1987; Бонч-Осмоловская, Заварзин, 1989; Caldwell et al., 1976; Odintsova et al., 1996). Обращает на себя внимание то, что физико-химические факторы среды, при которых развивается сообщество Thermothrix”, совпадают с условиями развития сообществ с доминированием представителей группы Aquifex-Hydrogenobacter. Не ясно, какие именно факторы среды способствуют развитию того или иного типа сообществ.

В субаквальных гидротермах рН флюида, как правило, не превышает 4.5 (Von Damm, 1995). Тем не менее, при смешении с морскими водами возникает резкий градиент физико-химических условий. рН изменяется от 3-5 до 6-7 и температура от 300ºС (в наиболее высокотемпературных глубоководных гидротермах) до 4-20ºС. Поэтому в гидротермальных системах создаваются условия для развития нейтрофильных термофильных микроорганизмов (Sievert et al., 1999; Takai et al., 2001). Литотрофные термофильные микроорганизмы полученные в настоящее время в чистых культурах включают метаногены, сульфат-, тиосульфат-, сероредукторы и денитрификаторы, а также факультативные анаэробы. Наибольшим количеством видов представлены метаногены, представители родов Methanococcus и Methanopyrus. Сульфатредуцирующие археи представлены родом Archaeoglobus. Органотрофные термофильные бактерии представлены родами Thermococcus, Pyrococcus, Staphylothermus, Hyperthermus, Pyrodictium (Бонч-Осмоловская, 2002). Анализы нативной ДНК с помощью 16S рРНК-ориентированных праймеров показали, что в субаквальных гидротермах присутствуют представители филогенетических групп эубактерий: ε-Proteobacteria, в-Proteobacteria, Desulfurobacterium, Aquificales. Археи представлены: Archaeoglobales, Thermococcales, Thermopasmales  (Reysenbach et al., 2000б; Takai et al., 2001).

В функционировании хемотрофных микробных сообществ важную роль играет окисление восстановленных соединений серы поступающих с флюидом на границе с кислород содержащими океаническими водами (Jannasch, Mottl, 1985; Karl et al., 1980). Большое количество окислов железа, вероятно бактериального происхождения, в районах субаквальных гидротерм может свидетельствовать о высокой роли окисления железа в функционировании сообщества  (Намсараев и др., 1991; Горшков и др., 1992; Juniper et al., 1988; Puteanus et al., 1991; Duhig et al., 1992; Stoffers et al., 1993; Bogdanov et al,. 1997; Iizasa et al,. 1998; Little et al., 1999; Trewin, Knoll, 1999; Preat et al., 2000; Emerson, Moyer, 2002). Также заметную роль может играть окисление метана (Гальченко, 2002; Teske et al., 2002).

 

1.3. Активности продукционных и терминальных деструкционных процессов в фототрофных и хемотрофных микробных сообществах гидротерм

 1.3.1 Микробные сообщества щелочных гидротерм

Определение интенсивностей продукционных и терминальных деструкционных процессов в фототрофных микробных сообществах щелочных гидротерм ранее не проводилось.

Хемотрофные микробные обрастания были исследованы в источнике Боулдер спринг (Йеллоустон) с температурой 90-93ºС, рН 8.9 и содержанием сульфида 3 мг/л. Было обнаружено, что добавление раствора сульфида натрия (13 мг/л сульфида) в пробу значительно стимулировало потребление 14С-ацетата. Стимулирующий эффект также оказывали сульфиды алюминия, кальция и сурьмы, легко гидролизующиеся в растворе. Слаборастворимые сульфиды не оказывали стимулирующего эффекта (сульфиды цинка, меди, свинца и т.д.). Тиосульфат и элементная сера не стимулировали потребление ацетата, сульфит и метабисульфит стимулировали (Brock et al., 1971).

В пробах ила на подводных термальных выходах в слабоминерализованном щелочном озере Танганьика (Восточно-Африканский рифт, рН (озеро) 8.5-9.2, рН (гидротермальные воды) 7.7-8.8, глубина термальных выходов от 0 до 6 м, температура на изливе 66-103ºС) была измерена интенсивность сульфатредукции в зависимости от рН. Было обнаружено, что оптимум процесса находится при рН 7, процесс полностью ингибируется при рН 8.8-9.2 (Elsgaard et al., 1994).

В пробах из гейзера Удачный (долина Гейзеров, Камчатка) с рН 8.5, азотного типа (72.2% в газовом составе), была определена скорость темновой продукция при 60 и 85ºС (до 107.07 мкгС/л сут). Также было показано наличие слабого процесса метаногенеза при 70ºС (0.072 мкгС/л сут) и активное образование ацетата из СО2, снижающееся с повышением температуры (до 25.41 мкгС/л сут) (Бонч-Осмоловская и др., 1999).

1.3.2. Микробные сообщества нейтральных гидротерм

 Продукционные процессы в цианобактериальных матах. Значения продуктивности цианобактериальных матов нейтральных гидротерм близки к значениям продуктивности других высокопродуктивных экосистем. Содержание хлорофилла а может достигать 700-800 мг/м2, что сравнимо с аналогичными данными полученными для микробных матов соленых озер и гиперсоленых лагун (до 551 мг хл а/м2, до 75.4 мг бхл а/м2) и несколько уступает значениям полученных в матах мелководных нейтральных гидротерм бухты Кратерной с температурой до 34°C (до 1.6 г хл а2, до 1 г бхл а2) (Brock, 1967б; Castenholz, 1969; Bauld, 1984; Gerdes et al, 1985; Tarasov et al., 1990).

Максимальная фотосинтетическая продукция может достигать нескольких грамм углерода на метр в сутки. Например, 2.3 гС/м2 сут в “зеленом” мате источника Термофильный (Камчатка), 4.32-5.4 гС/м2 сут в источнике Октопус спринг (Йеллоустон) (Горленко, Бонч-Осмоловская, 1989; Revsbech, Ward, 1984; Ferris et al., 1997), что сравнимо с значениями полученными в матах бухты Кратерной (до 3.7 гС/м2 сут), и несколько уступает значениям фотосинтетической продукции в микробных матах гиперсоленого озера Солар лейк (до 12 гС/м2 сут), гиперсоленых лагун Шарк бей и Спенсер Галф (до 6.13 гС/м2 сут) (Jorgensen, Cohen, 1977; Guerero, Mas, 1989; Skyring et al.,1989; Tarasov et al., 1990).

Максимальная темновая продукция в цианобактериальных матах нейтрального источника Термофильный достигает 0.29 гС/м2 сут, что значительно уступает темновой продукции в матах бухты Кратерной (до 29.7 гС/м2 сут) (Tarasov et al., 1990).

Максимальная фотосинтетическая продукция отмечена при температурах 55-45ºС (Горленко, Бонч-Осмоловская, 1989; Doemel, Brock, 1977; Castenholz, 1984; Revsbech, Ward, 1984). Максимальная скорость роста мата, определенная внесением в качестве маркера биологически инертного силиката карбида, также отмечена при температурах около 50ºС и составляет 18-45 мкм/сут (Doemel, Brock, 1977). Необходимо учитывать, что эта скорость может отражать сукцессионную фазу после нарушения целостности микробного мата и может не соответствовать скорости роста ненарушенного мата (Nold et al., 1996).

Наибольшая активность продукционных процессов в микробном мате отмечена в верхнем слое до глубины 2 мм, что в большинстве случаев соответствует максимальной глубине проникновения солнечного света (Bauld, Brock, 1973; Castenholz, 1984; Pierson et al., 2000). Исключение составляет мат, развивающийся в источнике Йистихвер (Исландия), где оксигенный фотосинтез отмечен на глубине до 14 мм (Jorgensen, Nelson, 1988). Глубина проникновения света определяется содержанием пигментов в верхнем слое мата в связи с затенением нижних слоев и нехваткой света для фотосинтеза (Brock, Brock, 1969; Bauld, Brock, 1973). Максимальное содержание белка также отмечено в верхних 2 мм мата (Doemel, Brock, 1977). При удалении верхнего слоя скорость оксигенного фотосинтеза уменьшается более чем в 10 раз (Ferris et al., 1997). В течение дня, в ходе оксигенного фотосинтеза, происходит подщелачивание поверхностного слоя цианобактериального мата. В микробном мате источника Хантерс спринг (Орегон, США) рН в поверхностном слое повышается до 9, тогда как в нижних слоях мата в ходе деструкционных процессов происходит подкисление до 6.3 (Revsbech, Ward, 1984). Интересно, что в “аноксигенных матах” подщелачивание поверхностного слоя не наблюдается, значения рН с глубиной практически не изменяются (Giovannoni et al., 1987; Castenholz et al., 1990).

Соотношение оксигенного и аноксигенного фотосинтеза может колебаться в широких пределах. На примере микробных матов источника Термофильного было показано, что доля аноксигенного фотосинтеза уменьшается с понижением температуры от 76-40% при 62-56ºС до 1-10% при температурах ниже 50ºС. Доля оксигенного фотосинтеза, соответственно, возрастает (Горленко, Бонч-Осмоловская, 1989).

Соотношение аноксигенного и оксигенного фотосинтеза также зависит и от времени  суток. Так, на примере цианобактериального мата с доминированием Synechococcus lividus (55-50єС) развивающегося в источнике Октопус спринг, было показано, что в течение дня фотосинтетическая фиксация углекислоты осуществляется Synechococcus lividus (Doemel, Brock, 1977). Тем не менее, присутствующий в мате Chloroflexus aurantiacus способен к фотоавтотрофному росту на сульфиде, хотя условия для этого создаются только в течение ограниченного периода времени утром, когда свет уже проникает в мат, а содержание сульфида все еще довольно высоко (Madigan, Brock, 1975; Revsbech, Ward, 1984).

В мате цианобактерии осуществляют оксигенный фотосинтез с высокой скоростью, но скорость деления клеток не высока в обычных условиях (Nold et al., 1996). Основным продуктом фотосинтеза цианобактерий в микробном мате являются полисахариды (67-84% меченого углерода обнаруживается в составе полисахаридной фракции) расходуемые цианобактериями в ходе темновых реакций (Konopka, 1992; Nold et al., 1996; Ferris et al., 1997). Также, значительная часть фотосинтетически фиксированного углерода выделяется клетками наружу. По разным оценкам доля внеклеточной продукции составляет от 12 до 46% (Горленко, Бонч-Осмоловская, 1989; Bauld, Brock, 1974). Среди выделяемых цианобактериями соединений доминирует гликолят (до 60% от внеклеточной продукции). Далее гликолят быстро поглощается Chloroflexus aurantiacus (Ward et al., 1984).

Внесение закисного железа (1 мМ) стимулирует оксигенный фотосинтез (до 500%) и темновую фиксацию (до 175%), но не стимулирует аноксигенный фотосинтез, как было показано на примере железистого источника Чоколейт пот (Йеллоустон, 54ºC, рН 6, Fe(II) 5.1 мг/л). Интересно, что стимулирование фиксации 14С-бикарбоната выше в пробах мата из более высокотемпературных зон с доминированием Synechococcus sp., чем в зонах с умеренной температурой и доминированием Oscillatoria sp. (Pierson et al., 1999; Pierson et al., 2000).

 

Деструкционные процессы в цианобактериальных матах. Биомасса цианобактериальных матов намного меньше, чем биомасса других экосистем, хотя значения продуктивности близки. Поэтому скорость деструкционных процессов в цианобактериальных матах должна быть очень велика (Guerrero, Mas, 1989). Измерение процесса деструкции с помощью силиката карбида показало, что деструкция проходит в 2 этапа. Первый протекает в течение 2-4 недель, в течение которого, вероятно, разрушаются легко разрушаемые вещества. Второй этап протекает в течение года, на этой стадии, вероятно, разрушаются трудно разрушаемые вещества (Doemel, Brock, 1977).

Популяция Chloroflexus aurantiacus является наиболее многочисленной в микробном мате среди организмов осуществляющим аеробную деструкцию органического вещества. Эта способность скорее всего проявляется в ходе ночной миграции на поверхность микробного мата. Также в процессе аэробной деструкции участвуют Isosphaera pallida, представители родов Thermus и  Meiothermus, протеобактерии, грамположительные бактерии (Santegoeds et al., 1996).

В течение суток в микробном мате происходят значительные колебания содержания кислорода и темновое сбраживание полиглюкозы цианобактериями рассматривается как важный механизм обеспечивающий поток углерода через сообщество (Richardson, Castenholz, 1987). В темновых анаэробных условиях Synechococcus lividus переключается на ферментативный метаболизм, что подтверждается уменьшением содержания меченой полиглюкозы и увеличением содержания меченых продуктов брожения (Nold et al., 1996). Ацетат и пропионат являются основными продуктами брожения (ацетат в соотношении 3:1 к пропионату, остальные кислоты в незначительных концентрациях) накапливающимися в мате ночью, при этом в образовании ацетата участвуют как цианобактерии, так и ацетогены (Anderson et al., 1987; Nold et al., 1996). При этом накопление ацетата происходит в верхних 3-4 мм мата (Ward et al., 1984). В дальнейшем ацетат и другие продукты брожения на свету поглощается Chloroflexus aurantiacus (Anderson et al., 1987). В основном ацетат включался в состав клеточного материала, только небольшая часть использовалась для образования СО2 (Sandbeck, Ward, 1982).

Основные продукты брожения, ацетат и водород, используются терминальными деструкторами. Направление процесса терминальной деструкции контролируется содержанием сульфата. При содержании сульфата в среде в 16.6 мг/л (Октопус спринг) сульфатредукция не подавляет метаногенез, который развивается с высокой скоростью (Ward, 1978). Схожие результаты были получены в источниках с содержанием сульфата от 11.5 до 21.1 мг/л (Sandbeck, Ward. 1982). В источнике Термофильный с содержанием сульфата около 30 мг/л сульфатредукция доминировала, а расход органического вещества через метаногенез составлял от 10 до 78% от расхода через сульфатредукцию (Горленко, Бонч-Осмоловская, 1989). В исландском источнике Граендалса с содержанием сульфата 84 мг/л  и йеллоустонских источниках Бэс лейк и Пейнтед пул с содержанием сульфата около 718 мг/л сульфатредукция являлась единственным терминальным процессом деструкции (Ward et al., 1984).

В микробных матах источника Термофильный наибольшие скорости терминальных процессов были отмечены в “зеленом” мате при температурах ниже 50°C. Максимальная скорость сульфатредукции составляла 1.44 гS/м2 сут, максимальная скорость метаногенеза составляла 0.42 гС/м2 сут (Горленко, Бонч-Осмоловская, 1989).

Процесс метаногенеза обнаружен в микробном мате источника Октопус спринг в диапазоне от 68 до 30ºC, с оптимумом около 45ºC (Ward, 1978). Ацетат не служит важным субстратом для метаногенеза в связи с активным потреблением его Chloroflexus aurantiacus. Автотрофный метаногенез играет намного большую роль, в микробном мате источника Октопус спринг 70-80% метана образуется из СО2 (Sandbeck, Ward, 1982). В микробных матах источника Термофильный образование метана из 14С-ацетата составляет только 11% от общего метаногенеза (Горленко, Бонч-Осмоловская, 1989).

 

Продукционные и деструкционные процессы в аноксигенных матах. В данном типе матов абсолютные значения продукционных и терминальных деструкционных процессов не определялись. Различными исследователями проводилось стимулирование фотоассимиляции 14С-бикарбоната внесением сульфида. Диурон не ингибировал ассимиляцию.  Внесение  сульфида (0.56 мМ) в пробы “мата Chloroflexus”, развивающегося в источнике Маммот спринг, стимулирует фиксацию на 400%. Светозависимое потребление 14С-ацетата также стимулируется внесением сульфида на 200%. Также было показано, что в данном мате происходит образование сульфида, при этом процесс подавлялся молибдатом, ингибитором сульфатредукции (Giovannoni et al., 1987). Внесение сульфида (0.7-1.1 мМ) в пробы “мата Chlorobium”, развивающегося в источнике  Травелодж спринг, стимулирует фиксацию на 100% (Castenholz et al., 1990).

 

Хемотрофные микробные сообщества нейтральных гидротерм. Максимальные значения продуктивности хемотрофных термофильных сообществ значительно уступают продуктивности фототрофных термофильных сообществ и продуктивности хемотрофных мезофильных сообществ. Скорость темновой фиксации углекислоты в “белом” мате с доминированием Thermothrix thiopara источника Термофильный составляет 0.017 гС/м2 сут (Горленко, Бонч-Осмоловская, 1989). В источнике Пульсирующий (Камчатка) максимальная темновая фиксация углекислоты составляет 212 мкгС/л сут (Бонч-Осмоловская и др., 1999).

Несмотря на ключевую роль хемосинтетической продукции в функционировании глубоководных гидротермальных сообществ, количественная сторона этой “роли” остается слабо изученной (Гебрук, Галкин, 2002). Бактериальная продукция в бактериальных обрастаниях на отложениях дна в пределах активных полей в среднем составляет около 11 мг С/м2 сут. Суммарная бактериальная продукция с учетом всех зон на одном поле составляет в среднем 275 мг С/м2 сут (Леин, Пименов, 2002).

В источнике Термофильный скорость сульфатредукции в “белом” мате составляет 0.038 гS/м2 сут, скорость метаногенеза 0.0129 мгС/м2 сут. Интересно, что скорость сероредукции составляет 0.096 гS/м2 сут, эта величина превышает сульфатредукцию в той же зоне в 2.3 раза. Таким образом, в присутствии элементной серы сероредукция успешно конкурирует с другими процессами. Обращает на себя внимание несбалансированность продукционных и деструкционных процессов в “белом” мате. В отличие от “зеленого” мата с доминированием цианобактерий, где продукция органического вещества значительно превышает деструкцию, в “белом” мате деструкция превышает продукцию в 5 раз (Горленко, Бонч-Осмоловская, 1989).

В источнике Пульсирующий скорость автотрофного метаногенеза достигает 0.26 мкгС/л сут и скорость ацетогенеза 9.58 мкгС/л сут. Также была отмечена высокая потенциальная способность к литотрофному восстановлению сульфатов и серы, железа, образованию метана, анаэробному окислению СО, сопряженному с образованием водорода. Литотрофный ацетогенез был незначителен (Бонч-Осмоловская и др., 1999).

Высокая активность терминальных деструкционных процессов была обнаружена в подводных гидротермах. Скорость сероредукции в грунте бухты Матупи (Новая Гвинея) достигает 57 гS/л сут (Бонч-Осмоловская и др., 1993). В илу вулканической воронки с глубины 40 м залива Пленти (Новая Зеландия) с температурой 85ºС скорость сульфатредукции достигает 1655.2 мкгS/л сут, метаногенеза из СО2 достигает 5.84 мкгС/л сут, из ацетата - 16.3 мкгС/л сут (Намсараев и др., 1994). В глубоководных гидротермах Гуаймас Калифорнийского залива с глубины 2010 м (50-70єС) скорость сульфатредукции достигает 1024 мкгS/л сут (Jorgensen et al., 1990). 

1.4. Экофизиология термофильных микроорганизмов щелочных гидротерм

 1.4.1. Температурные и рН границы развития микроорганизмов

 Существуют различные классификации микроорганизмов по отношению к температуре (Заварзин, Колотилова, 2001; Castenholz, Pierson, 1995; Wiegel, 1998). Как правило, к термофилам относят микроорганизмы с оптимумом развития при температурах свыше 50ºС. Среди них выделяют еще несколько групп. Собственно термофилы с оптимумом при 50ºС и максимальной температурой роста выше 60ºС. К экстремальным термофилам относятся микроорганизмы с минимальной температурой роста обычно свыше 35ºС, оптимумом развития выше 65ºС и максимальной температурой роста выше 70ºС. К гипертермофилам относятся микроорганизмы с минимальной температурой роста обычно свыше 60ºС, оптимумом развития выше 80ºС и максимальной температурой роста при температурах выше 85ºС (Wiegel, 1998). По данным Штеттера и соавторов (Blцhl et al., 1997) верхний температурный предел развития гипертермофильных микроорганизмов составляет 113ºС.

            Существуют различные классификации микроорганизмов по отношению к рН (Заварзин, Колотилова, 2001; Krulwich, Guffanti, 1989; Wiegel, 1998). По Вигелю, к алкалофилам относят микроорганизмы с оптимумом рН выше 8.5 и максимальным рН развития выше 10. Выделяют также группы факультативных алкалофилов с минимальным рН развития менее 8 и облигатных алкалофилов с минимальным рН выше 8. К алкалотолерантам относятся организмы с оптимумом рН менее 8.5 и максимальным рН развития выше 9 (Wiegel, 1998). Необходимо учитывать, что при измерении рН в щелочной области при высоких температурах необходимо вносить поправки, либо калибровать электрод при температуре измерения. Ошибка измерения может достигать одной единицы рН (Wiegel, 1998). 

 

1.4.2. Микроорганизмы – первичные продуценты

 Цианобактерии. Большинство термофильных (и мезофильных) цианобактерий более активно развивается в щелочных условиях. При культивировании на слабо забуференных средах происходит подщелачивание среды в ходе оксигенного фотосинтеза (Holm-Hansen, 1968; Castenholz, 1969). Так, скорость фотосинтеза нитчатой цианобактерии Phormidium molle не меняется при изменении рН от 7.3 до 9.6 и падает при рН 10.4 (Герасименко, 2002).

Максимальная постоянная температура, при которой могут существовать цианобактерии – 74ºС, верхний температурный предел развития Synechococcus lividus (Castenholz, 1969, 1984). Броком было показано, что фиксация 14С-бикарбоната в процессе фотосинтеза популяцией Synechococcus sp. может происходить при температуре 73ºС (Brock, 1967). Другие виды цианобактерий могут существовать в культуре при температурах: Synechococcus elongatus до 70ºС, Mastigocladus laminosus до 64ºС, Phormidium laminosum, P. tenue, P. valderiae до 57ºС, Oscillatoria terebriformis до 53ºС, Oscillatoria tenue до 47ºС. Отмечено развитие в природе следующих видов цианобактерий: Synechococcus minervae до 60ºС, Oscillatoria okenii до 60ºС, Oscillatoria amphibia до 57ºС, Oscillatoria animalis до 55ºС, Pleurocapsa minor до 54ºС, Calothrix sp. до 54ºС, Synechococcus aquaticus до 50ºС. Нижний температурный предел развития большинства термофильных цианобактерий составляет 30-35ºС (Castenholz, 1969).

Микроаэрофильные условия и присутствие восстановителей в небольших количествах оказывают стимулирующее воздействие на рост цианобактерий (Герасименко, Заварзин, 1982; Герасименко и др., 1987; Герасименко, 2002). Но высокое содержание сульфида подавляет оксигенный фотосинтез цианобактерий (Пиневич, Аверина, 2000). Наиболее токсичен сульфид при низких значениях рН из-за более высокой способности недиссоциированного сероводорода к проникновению через клеточные мембраны (Howsley, Pearson, 1979). В этих условиях цианобактерии переключаются с оксигенного на аноксигенный фотосинтез, используя сульфид  в качестве донора электронов для фотосистемы I, либо защищают фотосистему II от ингибирования сульфидом (Венецкая и др. 1987; Castenholz, Utkilen, 1984; Cohen, 1984; Cohen et al. 1975; Cohen et al., 1986). Тиосульфат и элементная сера не могут служить донорами электронов для аноксигенного фотосинтеза у цианобактерий (Castenholz, 1976). Вероятно, древние цианобактерии существовали в сульфидсодержащих условиях. При этом использование воды, как донора электронов, первоначально могло быть способностью позволяющей переносить временное отсутствие сульфида (Cohen, 1984). 

Железо может служить донором электронов для мембран связаных комплексов фотосистемы II (Dismukes et al., 2001). Коэном было показано, что цианобактерии Oscillatoria sp. и Microcoleus chtonoplastes осуществляют Fe(II)-зависимую фотоассимиляцию СО2. Процесс ингибируется диуроном, что свидетельствует о том, что железо донирует вторую фотосистему. Конечный продукт, оксид железа, выделяется в среду подобно выделению элементной серы в сульфидзависимом аноксигенном фотосинтезе (Cohen et al., 1986). Пирсон было показано, что в железистом нейтральном источнике Чоколейт пот (Йеллоустон) происходит образование чехлов окисного железа вокруг нитей цианобактерий (Pierson et al., 2000). Эксперименты со стимулированием закисным железом фиксации 14С-бикарбоната показали, что наибольшее стимулирование (до 500% фотоассимиляции, до 175% темновой фиксации) происходит при добавлении 1 мМ закисного железа (56 мг/л). Стимулирование фиксации железом выше в пробах мата из более высокотемпературных зон с доминированием Synechococcus sp., чем в зонах с умеренной температурой и доминированием Oscillatoria sp. (Pierson et al., 1999).

Большинство цианобактерий является облигатными фотоавтотрофами. Относительно небольшое количество цианобактерий способно существовать как аэробные гетеротрофы в темноте, но скорость роста при этом значительно уступает росту в фотоавтотрофных условиях. Анаэробный метаболизм в темноте ограничен брожением и используется для поддержания существования в неблагоприятных условиях (Stal, 1995). Способность к восстановлению серных соединений при брожении была показана у мезофильных цианобактерий, но у термофильных цианобактерий не известна (Oren, Shilo, 1979; Moezelaar et al., 1996).

 

Аноксигенные фототрофные бактерии (АФБ). Известно всего девять видов термофильных АФБ (Castenholz, Pierson, 1995; Hanada et al., 1995a, b; Hanada et al., 2002). Из них способны существовать в культуре, или показано существование в природе, при рН выше 8.5 только термофильные нитчатые зеленые бактерии. Также для несерных пурпурных бактерий Rhodopseudomonas palustris и Rh. gelatinosus было показано существование в природе при рН 9.2-9.8 и температуре выше 50ºС, но они не были способны к росту при высоких температурах в лабораторных условиях. Высказано предположение, что бактерии либо переживают неблагоприятные условия, периодически активируясь при снижении температуры, либо в мате существуют условия, при которых возрастает верхний предел их толерантности к температуре.  Оба организма имели оптимум рН около 7 и не проявляли тенденции к алкалофилии (Горленко и др., 1985; Компанцева, Горленко, 1988). Аналогичное явление было обнаружено для культур несерных пурпурных бактерий родов Blastohloris, Phaeospirillum, Rhodoplanes, Rhodopseudomonas, Rubrivivax выделенных из матов развивающихся при 55-65єС (источник Накабуса, Япония), но растущих в лабораторных условиях при температурах не выше 43-48єС (Okamura et al., 2003).

 

Термофильные нитчатые АФБ широко распространены в гидротермах с температурой до 72ºС и рН от 6.2 до 10.4. В настоящее время известно четыре вида: Chloroflexus aurantiacus, Chloroflexus aggregans, Roseiflexus castenholzii, Heliothrix oregonensis. Культивируемые организмы обладают оптимумом рН 7-8, Chloroflexus aggregans и Roseiflexus castenholzii были обнаружены только в источниках с рН не выше 8, но Chloroflexus aurantiacus и Heliothrix oregonensis были обнаружены в источниках с рН до 10.4 (H. oregonensis с  pH 8.5) (Юрков и др., 1991; Pierson, Castenholz, 1974; Castenholz, Pierson, 1995; Hanada et al., 1995a, b; Hanada et al., 2002; Blanck et al., 2002; Nьbel et al., 2002).

Наиболее изученным представителем этой группы является Chloroflexus aurantiacus. Его оптимум роста 52-60ºС, максимальная температура роста ~70ºС (Pierson, Castenholz, 1974). Chloroflexus aurantiacus не способен к фиксации молекулярного азота (Heda, Madigan, 1986). Наиболее быстро рост всех выделенных штаммов происходит фотогетеротрофно (Castenholz, Pierson, 1995). Ряд штаммов способны к медленной сульфидзависимой фотоавтотрофии с образованием молекулярной серы (Кеппен, Красильникова, 1986; Madigan, Brock, 1975; Giovannoni et al., 1987). Тиосульфат, сульфит, молекулярная сера не могут использоваться в качестве доноров электронов, но могут использоваться в качестве акцепторов электронов восстанавливаясь до сероводорода на среде с органическими соединениями в темноте (Кондратьева, Красильникова, 1988). Также в темноте организм способен расти в аэробных условиях за счет дыхания и в анаэробных условиях за счет сбраживания углеводов или пирувата (Красильникова и др., 1986; Красильникова, Кондратьева, 1987).

Красильникова и Кондратьева (1987) сообщают, что Chloroflexus aurantiacus в темноте в анаэробных условиях в присутствии глюкозы восстанавливает окисное железо. Ранее активность железоредуктазы и редукция железа мембранными фракциями была показана у мезофильных АФБ (Moody et al., 1985; Dobbin et al., 1996). Образование чехлов окисного железа наблюдалось у мезофильного штамма Chloroflexus aurantiacus в микроаэрофильных условиях при развитии на среде с 0.01% триптона и порошком металлического железа (Горленко, 1981). При этом бактериальные нити выползали из чехлов, что приводило к накоплению большого количества чехлов, неотличимых от чехлов Leptothrix. Окисление железа, скорее всего, не является источником энергии для фиксации СО2, а связано с действием перекиси водорода, образующейся в процессе окисления органического субстрата (Дубинина, 1977).  Это может являться одним из механизмов участия бактерий в генезисе железистых минералов древних осадочных месторождений ганфлинтского типа. Способность Chloroflexus aurantiacus к использованию восстановленного железа как донора электронов для фотосистемы I не была исследована. Ранее было показано, что мезофильные АФБ способны использовать закисное железо как донор электронов (Widdel et al., 1993; Ehrenreich et al., 1994).

Heliothrix oregonensis не был выделен в чистую культуру. Клетки более толстые, чем у Chloroflexus aurantiacus (1.5 мкм и 0.5-1.0 мкм соответственно), хлоросомы отсутствуют.  Бактериохлорофилл а - единственный пигмент. Проявляет себя как фотогетеротроф толерантный к кислороду или даже нуждающийся в кислороде. Растет в диапазоне температур от 35 до 56-60°С с оптимумом в пределах 40-55°С. Устойчив к высоким интенсивностям света до 32 клюкс. Heliothrix oregonensis найден преимущественно в микробных матах щелочных источников с рН около 8.5, в которых он образует верхний слой оранжевого цвета (Pierson et al., 1984, 1985).

Chloroflexus aggregans и Roseiflexus castenholzii гораздо менее изучены чем Chloroflexus aurantiacus. Основные характеристики этих организмов очень похожи. Эти бактерии способны к фототрофному росту на органических субстратах, а также к гетеротрофному аэробному росту в темноте. Отличия заключаются в следующем: клетки Chloroflexus aggregans более толстые (до 1.5 мкм), скорость скольжения нитей по поверхности примерно в 100 раз выше, есть способность к быстрому образованию аггрегатов в жидкой среде (за 20-30 минут), не способен к использованию ацетата, цитрата, этанола и глицил-глицина (Hanada et al., 1995b). Roseiflexus castenholzii не обладает хлоросомами и бактериохлорофиллом с  и содержит только бактериохлорофилл а (Hanada et al., 2002).

 

Хемолитоавтотрофные алкалотермофильные и алкалотолерантные микроорганизмы. Хемолитоавтотрофные алкалотермофильные микроорганизмы в настоящее время не известны (Кевбрин, личное сообщение; Wiegel, 1998). Единственным известным хемолитоавтотрофным термофильным алкалотолерантным организмом является метаногенная археобактерия Methanothermobacter thermoautotrophicum (ранее Methanobacterium thermoautotrophicum, синоним M. thermoalcaliphilum) способная существовать при рН 9 и обладающая оптимумом рН 7.7.-7.8 (Zeikus, Wolfe, 1980; Blotevogel et al., 1986).

 

1.4.3. Микроорганизмы – деструкторы 

Аэробные и факультативно аэробные органотрофные микроорганизмы. Валидно опубликованные алкалофильные термофильные аэробные микроорганизмы в настоящее время не известны. Недавно Мартинссон с соавторами обнаружили в щелочных субаквальных гидротермах Эйджафьордур аэробные органторофные микроорганизмы способные существовать в лабораторных условиях при рН 10 и температуре 60-72ºС. По результатам анализа 16S-рРНК (на основании анализа 400-500 пар нуклеотидов, сходство 95-99%) изоляты были отнесены к видам Geobacillus thermoleovorans, “G. caldotenax”, G. flavothermus, G. caldovelox (Marteinsson et al., 2001). Тем не менее, типовые штаммы данных организмов не способны расти при рН выше 8 (Назина, Григорьян – личное сообщение).

Известные микроорганизмы являются либо “самыми “алкалофильными” среди термофилов, либо самыми “термофильными” среди алкалофилов” (Wiegel, 1998). Оптимумом рН выше 8.5 обладает Bacillus sp. штамм 221, способный расти до рН 10 и максимальной температурой роста 57ºС, являющийся алкалофилом, но не термофилом (Horikoshi, 1990, Wiegel, 1998). Среди термофильных микроорганизмов известен ряд аэробных алкалотолерантных бактерий (археобактерии неизвестны). Это представители рода Bacillus (B. pallidus, B. thermocloaceae, B. thermoaerophilus), рода Meiothermus (M. chliarophilus, M. ruber, M. silvanus), Geobacillus caldotenax”, Thermus oshimae, Sphaerobacter thermophilus, Thermomicrobium roseum, Isosphaera pallida, Rubrobacter xylanophilus (Wiegel, 1998). Храпцова и соавторы выделили из термальных источников Бурятии ряд алкалитолерантных термофильных аэробных микроорганизмов с оптимумом роста при 50ºС и рН 8.0 (Храпцова и др., 1984).

О способности к использованию неорганических соединений термофильными аэробными органотрофными микроорганизмами известно мало. Meiothermus ruber способен к окислению тиосульфата с образованием сульфата, причем добавление тиосульфата не стимулировало рост (Chung et al., 1997). Способность к окислению тиосульфата, а также восстановлению элементной серы и ряда металлов была обнаружена у представителей рода Thermus, кроме Thermus oshimae (Kieft et al, 1999; Skirnisdottir et al., 2001).

 

Анаэробные органотрофные микроорганизмы. В настоящее время в этой группе известно семь видов анаэробных алкалотермофильных микроорганизмов.  К ним относятся археи Methanohalophilus zhilinae, Thermococcus alcaliphilus, бактерии рода Clostridium (C. paradoxum, C. thermoalcaliphilum), Anaerobranca gottschalkii, Thermosyntropha lipolytica, Desulfotomaculum alkaliphilum (Mathrani et al., 1988; Li et al., 1993, 1994; Keller et al., 1995; Svetlitshnyi et al., 1996; Wiegel, 1998; Pikuta et al., 2000). К анаэробным термофильным алкалотолерантным микроорганизмам относятся археи Methanobacterium thermoflexum, Thermococcus fumicolans, бактерии Anaerobranca horikoshii, Thermobrachium celere, Caloramator indicus, Thermoanaerobacter ethanolicus (Wiegel, Ljundgahl, 1982; Kotelnikova et al., 1993; Engle et al., 1995; Chrisostomos et al., 1996; Godfroy et al., 1996; Wiegel, 1998).  Все организмы являются органогетеротрофами, о способности к использованию неорганических соединений известно немного. Desulfotomaculum alkaliphilum способен восстанавливать сульфат, сульфит, тиосульфат, но не элементную серу и нитрат (Pikuta et al., 2000). Thermococcus alcaliphilus способен восстанавливать полисульфид и элементную серу (Keller et al., 1995).

1.5. Участие микробного сообщества щелочных гидротерм в минералообразовании

 При выходе гидротермальных вод на поверхность и протоке по руслу источника создаются градиенты по концентрациям, растворимости компонентов, температуре, рН и давлению (Крайнов, Швец, 1980). В ходе этого создается система геохимических барьеров, на которых происходит резкое уменьшение интенсивности миграции ряда элементов и образование минералов (Перельман, 1972; Аверкин, 1987). Микробное сообщество играет важную роль в процессе минералообразования в гидротермальных системах, участвуя в создании геохимических барьеров (Заварзин, 1984).

Миграция катионогенных элементов, в первую очередь железа, в щелочных водах затруднена. Поэтому, наибольшую роль среди минералов, образующихся по изливу щелочных термальных вод, играют соединения анионогенных элементов: силикаты и карбонаты (Перельман, 1972).

 

Силикаты. Щелочные термальные воды содержат высокие концентрации кремния (около 100 мг/л). При постепенном охлаждении воды по изливу и снижении рН избыток кремневой кислоты относительно равновесной величины остается во взвешенном состоянии в виде коллоида и практически не осаждается. Поэтому осаждение кремнезема (H4SiO4 -> SiO2 + 2H2O) происходит при испарении и охлаждении раствора (Го Окамото и др., 1963; Walter, 1976). Примером отложения силикатов из щелочного гидротермального раствора является образование гидротермальных построек у северного побережья Исландии (Эйджафьордур). Здесь происходит смешение термальных вод (pH 10, 71°С) с содержанием кремния 93.7 мг/л и холодных нейтральных океанических вод. Образующиеся постройки сложены из силикатов. Характерно, что металлические сульфиды, часто встречающиеся в кислых черных курильщиках, в них не были обнаружены (Marteinsson et al., 2001).

Образование гейзеритов (силикатных построек на выходах гидротерм) отмечалось на многих источниках с нейтральными и щелочными водами (Walter, 1976; Konhauser et al., 2001; Blanck et al., 2002; Inagaki et al., 2003). Ранее доминировало мнение о преимущественно абиогенном образовании гейзеритов. Так, Уолтер описал механизм образования кремнистых гейзеритов с колончатыми ламинациями при разбрызгивании воды из потока и осаждении ее в виде капель на поверхности камней. При испарении капель на поверхности остаются тонкие бляшки кремнезема. Ламинация в образующемся кремнистом гейзерите очень тонкая и регулярная (Walter, 1976). Электронно-микроскопические наблюдения показали наличие микрофоссилий в гейзеритах. Тем не менее, роль микробного сообщества в образовании силикатных пород остается во многом невыясненной. Считается, что микробные обрастания и маты служат центрами нуклеации при образовании силикатных минералов, а далее процесс минералообразования происходит автокаталитически (Герасименко, Крылов, 1983; Oehler, Schopf, 1971; Ferris et al., 1986; Cook, Stackes, 1995; Jones, Renaut, 1996, 1997; Jones et al., 1997 a,b.; Konhauser, Ferris, 1996; Fortin, Ferris, 1998; Konhauser et al., 2001; Inagaki et al., 2003). Недавние исследования показали, что роль микробного сообщества в образовании гейзеритов может быть больше, чем считалось ранее. Культура Thermus sp. осаждала кремнезем во время экспоненциальной фазы роста, при этом в клетках синтезировался белок (Sipsilica induced protein), появлявшийся только в присутствии коллоидного кремния. Функция этого белка неизвестна, высказано предположение, что осаждение кремния необходимо для закрепления клеток на поверхности субстрата в потоке воды (Inagaki et al., 2003).

 

Карбонаты. Образование травертинов - карбонатных пород на выходах источников отмечается многими исследователями. Механизм образования травертинов хорошо изучен. При выходе вод на поверхность давление падает, происходит вскипание углекислого газа, который улетучивается из гидротермальных вод. В результате вода становится пересыщенной по кальциту и происходит его выпадение из раствора (Аверкин, 1987; Плюснин и др., 2000; Chafetz, Folk, 1984; Fouke et al., 2000). Образующиеся травертины могут достигать 85 метров в толщину и занимать площади до нескольких сотен километров (Chafetz, Folk, 1984).

Микробное сообщество гидротерм играет важную роль в образовании травертин. Считается, что большинство травертин образовано в результате совместного воздействия биогенных и абиогенных факторов. Роль факторов зависит от множества переменных: содержания растворенного СО2, температуры воды, морфологии травертин, интенсивности света и т.д. В травертине слои биогенно осажденного кальцита могут перемежаться со слоями абиогенного кальцита (Chafetz, Folk, 1984). Биогенно осаждаемый кальцит может составлять до 90% от всего осаждаемого кальцита. Наибольший вклад в осаждение карбоната кальция вносят цианобактерии, удаляющие СО2 из раствора и нарушающие карбонатное равновесие (Орлеанский, Герасименко, 1982; Заварзин, 2002; Chafetz, Folk, 1984; Chafetz et al., 1991; Spiro, Pentecost, 1991; Pentecost, 1994, 1995).

 

Образование травертинов на источниках Б.р.з. Судя по максимальной растворимости аморфного кремнезема в щелочных условиях (300-1000 мг/л), исследованые гидротермы Б.р.з. недонасыщены кремнием. Об этом же свидетельствует и отсутствие в районе выхода гидротерм значительных отложений кремнезема (Ломоносов, 1974).

На выходах Аллинского и Гаргинского источников происходит образование травертинов с низкими содержаниями SiO2 (до 3.6%). В термальных водах источников натрий доминирует над кальцием, сульфат-ион доминирует над гидрокарбонат-ионом, а также содержится значительные концентрации растворенной кремнекислоты, поэтому факт образования из таких вод карбонатно-кальциевых травертинов представляет значительный интерес (Борисенко и др., 1976). По мнению Плюснина образование травертинов на Гаргинском источнике не может происходить в ходе декомпрессии углекислого газа при выходе на поверхность, так как содержания углекислого газа, карбоната, гидрокарбоната и кальция слишком низки. Поэтому в образовании травертина большую роль может играть деятельность цианобактериального мата развивающегося на поверхности травертина (Плюснин и др., 2000).

 

Образование строматолитов в древних гидротермах. Современные процессы образования гейзеритов и травертинов по изливу гидротерм могут служить актуалистической моделью образования древних строматолитов (Герасименко, 2002;  Walter, 1976; Walter et al., 1976). Строматолиты - органоседиментарные структуры образованные при связывании, улавливании и отложении карбонатного осадка в результате роста и метаболической активности микроорганизмов, в основном цианобактерий (Walter, 1983). Строматолиты доминировали на протяжении всего докембрийского этапа развития биосферы. Резкое сокращение количества строматолитов происходит в фанерозое в связи с появлением и экспансией скелетных организмов вытеснивших микробные маты в отдельные неблагоприятные экологические ниши (Семихатов и др., 1999). Сохранность микрофоссилий в карбонатных породах низка (Головенок, 1989; Chafetz, Folk, 1984), хотя иногда в них могут сохраняться органостенные микрофоссилии или кальцифицированные останки (Knoll, 1985, 1996).

Лучшая сохранность микрофоссилий обеспечивается при окремнении микроорганизмов (Головенок, 1989). Древнейшие раннеархейские микрофоссилии (серии Варравуна в Австралии, Онвервахт и Фиг три в Южной Африке, 3.5 млрд. лет) окремнены и заключены в кремнеземный матрикс. Так, в химическом составе строматолитов серии Онвервахт доминирует кремнезем: SiO2 (95.68–98.90%), Fe2O3 (0.5-3.96%), C неорг (0.07 – 0.11%), C орг (0.05 – 0.11%), Al2O3 (0.06 - 0.1%) (Walsh, 1992). Раннеархейские строматолиты были образованы нитчатыми и одноклеточными прокариотами. Вероятно, строматолитобразующими организмами были фотоавтотрофы (показано по фракционированию углерода), обладавшие фототаксисом и образовывавшие слизистый чехол (Walter, 1983). Размеры микрофосилий в строматолитах серии Онвервахт: диаметр сфероидов от 4 до 10 мкм, толщина филаментов от 0.2 до 2.5 мкм, длина до 200 мкм, - близки к размерам микроорганизмов в составе микробного мата (Walsh, 1992). 

Считается, что большинство известных строматолитов были образованы микробными матами развивающимися в гиперсоленых лагунах в эвапоритовой обстановке (Семихатов и др., 1999). При этом, накопление кремния объясняется выносом кремнезема из древних областей сноса в процессе выветривания. В докембрийских морях кремневые губки и радиолярии не известны, поэтому кремнезем мог накапливаться до стадии насыщения, особенно в мелководных бассейнах, где шло интенсивное выпаривание вод. Затем, в процессе диагенеза первоначально гидратированный кремнезем становился дегидрированным, переходя в кремни (Головенок, 1989; Заварзин, 1993; Весталл, Велш, 2002).

В последние годы появляются данные о том, что древнейшие строматолиты могут иметь гидротермальное происхождение. Анализ строматолитов серии Онвервахт зеленокаменного пояса Барбертон (ЮАР) и серии Варравуна кратона Пилбара (Австралия) возрастом около 3.5 млрд. лет показал, что вулканическая и гидротермальная активность оказали серезное влияние на породы. При этом морфология строматолитов дает основания для предположения о том, что они были сформированы в результате силификации микробного мата развивавшегося по изливу термального источника (Весталл, Велш, 2002; Westall, Marchesini, 2002).

 

Окремнение микроорганизмов в современных гидротермах. Актуалистические исследования микробных матов гидротерм показывают, что современное сообщество фоссилизируется с образованием микрофоссилий схожих с древними (Golubic, 1976; Knoll, Golubich, 1979; Knoll, 1996). Было показано, что замещение микроорганизмов кремнеземом происходит очень быстро при коагуляции геля кремниевой кислоты. Исследования с применением сканирующего электронного микроскопа цианобактериальных матов источников Камчатки показали, что замещение органического вещества происходит с сохранением мельчайших морфологических деталей. При этом сначала замещаются сами микроорганизмы, а затем кремнезем заполняет пространство между ними (Крылов, Тихомирова, 1988).

Прямое сопоставление современных микроорганизмов и микрофоссилий затруднено, так как существует значительное морфологическое сходство между многими филогенетически удаленными группами микроорганизмов. Трудности биологической интерпретации увеличиваются и в связи со сложными посмертными процессами изменения клетки (Сергеев, 1992). Например, у нитчатых микроорганизмов могут разрушаться клеточные перегородки и, в результате, образуются полые нити похожие на пустые чехлы. Часто происходит распад трихомов на отдельные клетки, а сами клетки меняют форму. Наиболее отчетливо этот процесс наблюдался в погибших нитях цианобактерии Mastigocladus laminosus образующей до 20 различных форм сохранности (Герасименко, Крылов, 1983).

По мнению Нолла, актуалистические исследования современных микробных сообществ, аналогичных существовавшим в докембрии, должны стать одним из основных направлений исследования докембрия в ближайшее десятилетие. При этом, исследования должны включать в себя изучение развития микробных сообществ, вариации состава и сохранности микроорганизмов (Knoll, 1996).  

ЗАКЛЮЧЕНИЕ ПО ОБЗОРУ ЛИТЕРАТУРЫ 

Щелочные гидротермы широко распространены в природе, но, в отличие от кислых и нейтральных гидротерм, гораздо менее изучены (Соломин, Крайнов, 1998). Геохимический их облик имеет ряд особенностей: щелочность обусловлена не ионами карбонатной системы, а силикатными и даже боратными ионами; в водах более активно мигрируют анионогенные элементы, тогда как катионогенные элементы часто образуют слаборастворимые соединения; более быстро происходит окисление переменновалентных элементов (Перельман, 1972; Крайнов, Швец, 1980).

Ранее исследователями было показано, что по изливу щелочных термальных вод развиваются микробные сообщества с доминированием цианобактерий, либо хемотрофных микроорганизмов (Горленко и др., 1985; Юрков и др., 1992; Marteinsson et al., 2001; Krienitz et al., 2003). Сообщества с доминированием АФБ не были обнаружены, хотя, согласно имеющимся представлениям, должны быть широко распространены в сульфидсодержащих термальных водах (Castenholz, 1984).

Зависимость активностей продукционных и терминальных деструкционных процессов от условий среды была исследована на примере хемотрофных сообществ щелочных гидротерм (Бонч-Осмоловская и др., 1999; Brock et al., 1971; Elsgaard et al., 1994). Тогда как данные об интенсивностях продукционных и терминальных деструкционных процессов в фототрофных сообществах щелочных гидротерм отсутствуют.

Известно небольшое количество алкалофильных и алкалотолерантных видов термофильных микроорганизмов (около 30 видов) (Castenholz, 1969; Wiegel, 1998). Данные об использовании ими неорганических соединений ограничены, известно об участии в цикле серы, но данные об участии в циклах железа и селена отсутствуют.

Процессы минералообразования в щелочных условиях отличаются от нейтральных (Перельман, 1972). Поэтому изучение роли микробного сообщества щелочных гидротерм в минералообразовании вызывает несомненный интерес. 

 

Отсюда – задачи настоящей работы:

 

5.      Изучение состава микробных сообществ щелочных термальных источников в связи с изменением физико-химических условий. 

6.      Изучение активности продукционных и терминальных деструкционных процессов в фототрофных и хемотрофных микробных сообществах в разных экологических зонах источников.

7.      Исследование экофизиологических особенностей термофильных микроорганизмов участвующих в циклах углерода и серы в сообществах.

8.      Изучение участия микробных сообществ щелочных гидротерм в минералообразовании.

 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2. Объекты и методы исследования

2.1. Объекты исследования 

Были исследованы слабоминерализованные (до 1 г/л) азотные гидротермы Б.р.з. расположенные в Курумканском и Баргузинском районах Республики Бурятия и минерализованные (до 25 г/л) азотные гидротермы острова Паоха, расположенного на озере Моно Лейк (Калифорния, США). Полевые исследования на источниках Б.р.з. проводились в летне-осенний период с 1998 по 2002 год. Пробы на острове Паоха были отобраны В.М. Горленко летом 2000 г. Химический состав термальных вод приведен в таблице 1. Здесь и далее слабоминерализованные источники перечисляются в порядке повышения рН воды на изливе источника.

Гаргинский источник находится в Курумканском районе Республики Бурятия в долине реки Гарга (левого притока реки Баргузин). Термальная вода выходит на склоне долины реки из пещеры сечением около 1 м2 и по ложбине стекает к реке, находящейся приблизительно в 100 м от выхода источника. Выделяющийся газ на 99.27 % состоит из азота (Ломоносов, 1974). По химическому составу вода сульфатно-натриевая, с низкой минерализацией, равной 1.08 г/л, температура 75°С, рН 7.7. Содержание радона 40 эман.  рН воды источника более низкий по сравнению с другими исследованными нами гидротермами Байкальской рифтовой зоны. По мнению Замана это может быть объяснено радиолитическим разложения воды (Замана, 2000).

По изливу источника образуется травертин в форме купола, состоящего из нескольких ступеней. Максимальная мощность отложений составляет 2.5 м. Купол имеет овальную форму, длиной 50 м, шириной до 25 м, и занимает почти всю площадь родниковой воронки. По составу травертин близок к чисто карбонатно-кальциевым, в нем также фиксируется относительно высокое содержание SiO2 (3.61%) и MnO (1.27%).

Возраст травертин средневерхнеплейстоценовый, и составляет 19245-25725 лет (Плюснин, 2000).

Уринский источник расположен в Баргузинском районе Республики Бурятия в бассейне реки Уро (левого притока реки Баргузин) по левому берегу ручья Лиственничного в 1.3 км от его устья. Координаты источника 53°39’ с.ш., 110°07’ в.д. Ближайший населенный пункт – деревня Большое Уро, находится в 25-28 км от источника. Термальные воды выходят из-под груд биотитовых гранитов на площади около 200 м2. Воды источника гидрокарбонатно-сульфатно-натриевого типа.

Температура вод на изливах от 69 до 25°С, рН 8.8-9.1, Eh от -72 до +199 мВ. Выделяющийся газ на  98 % состоит из азота (Власова и др., 1962).

Сеюйский источник находится в Курумканском районе Республики Бурятия у северо-восточного замыкания Баргузинской долины на правом берегу реки Сеи, в 4 км от ее устья. Ближайший населенный пункт – поселок Майский, находится в 50 км от источника. Выход терм расположен у подножья террасы высотой 10-12 метров, сложенной мелкозернистым песком. Выход источника приурочен к озеру размером 4*7 метров и глубиной до 1.5 метров, со дна которого бьют многочисленные грифоны с температурой воды до 55°С (Ломоносов, 1974). Выделяющийся газ на 98% состоит из азота. Воды источника гидрокарбонатно-сульфатно натриевого типа. Температура воды на поверхности озера 49.7°С, рН 9.5-9.6, Eh -45 мВ. Минерализация 0.4 г/л.

Аллинский источник расположен по берегам реки Алла в районе ее выхода из Баргузинского хребта в 7 км на запад от села Алла Курумканского района Республики Бурятия. Выходы расположены у подножия террас, на каменистых отмелях, либо на дне боковых проток. Выходы термальных вод периодически меняют свое местоположение. Основными причинами являются изменение русла реки при наводнениях, засыпка грунтом и илом выходов термальных вод. Воды источника гидрокарбонатно-сульфатно натриевого типа. Выделяющийся газ на 98% состоит из азота (Власова и др., 1962).

Большереченский источник находится на территории Баргузинского государственного биосферного заповедника (Республика Бурятия) в долине реки Большой, на расстоянии 25-28 км от Байкала, географические координаты: 54°25¢ с.ш. и 109°50¢ в.д. Максимальная температура воды  зарегистрирована на выходе источника №6, согласно обозначению источников по Мартынову (Мартынов, 1960). Этот наиболее крупный источник стал основным объектом нашего исследования. Источник принадлежит  к азотному типу термальных вод. Выделяющийся газ на 88% состоит из азота, содержит 0.9% метана, 0.5% CO2, 0.116% гелия (Ломоносов, 1974). Температура воды на выходе 74°С, по данным наших измерений в различные годы (июль-сентябрь: 1986, 1989, 1996, 2001 г.) колебалась  незначительно, не более 1-2° С. По химическому составу вода источника относится к гидрокарбонатно-хлоридно-сульфатно-натриевому типу. Изливающиеся воды содержат также растворенный сульфид в количестве 12-13.4 мг/л. рН воды в различные годы оставался в пределах от 9.25 до 9.8.

            Источник Паоха расположен на острове Паоха, на озере Моно-лейк. Озеро расположено в центральной части штата Калифорния, США, к востоку от хребта Сьерра-Невада. Озеро расположено в замкнутом бассейне. В результате испарительного концентрирования содержание солей в воде озера достигает 82-92 г/л. рН воды озера 9.5. По берегам озера на острове Паоха расположено большое количество горячих источников. Воды источников минерализованые, щелочные, содержат метан, поступающий из меторождения природного газа расположенного под дном озера, и сероводород. Термальные воды содержат высокие конценрации фтора, бора, лития, йода, ртути и мышьяка (Oremland et al., 1987, 2000; Oxburgh rt al., 1991; The Mono Basin…, 1987). Термальные воды источника Паоха обладают температурой 84-94°С, минерализацией 25 г/л, рН 9.7. Содержание сероводорода 55 мг/л. Воды хлоридного кальциевого-натриевого состава.

(...............)

ЗАКЛЮЧЕНИЕ 

Главным физико-химическим фактором среды, оказывающим влияние на состав и распространение микробных сообществ в гидротермах, является температура (Горленко и др., 1985, Горленко, Бонч-Осмоловская, 1989; Brock, 1967). С уменьшением температуры по изливу исследованных нами источников разнообразие микроорганизмов расширяется.

В щелочных гидротермах микробные сообщества кроме высокой температуры подвергаются комбинированному воздействию и других экстремальных факторов: высокого рН и, в ряде случаев, высокого содержания сульфида и минерализации. В исследованных гидротермах фототрофные сообщества появляются при более низкой температуре чем в слабощелочных и нейтральных гидротермах. Для сравнения, в Уринском источнике с рН 8.8 цианобактериальный мат начинается с температуры 64ºС, тогда как в слабощелочном Октопус спринг с 73ºС (Brock, 1967). При этом, наблюдается обратная зависимость между верхним температурным пределом распространения микробного мата и содержанием сульфида в источнике (рис. 27). Чем выше содержание сульфида, тем ниже максимальная температура распространения микробного мата по изливу источника.  Также было обнаружено, что термофильная цианобактерия Mastigocladus laminosus, широко распространенная в нейтральных гидротермах, практически не встречается в микробных матах щелочных источников. Вместо нее в широком диапазоне условий среды доминируют цианобактерии Phormidium spp. и Anabaena spp., являющиеся более толерантными к высоким значениям рН.

 Важной особенностью щелочных гидротерм является доминирование цианобактерий в составе микробных матов при содержании сульфида в воде более 1 мг/л. Ранее считалось, что при такой концентрации сульфида в составе микробного мата обязательно доминируют аноксигенные фототрофные бактерии (АФБ) (Castenholz, 1976, 1977; Ward et al., 1989). Наши исследования показали, что это правило не может быть применено к щелочным гидротермам. Так, на диаграмме рН-Т, построенной с помощью литературных и собственных данных, указаны области распространения различных типов сообществ при содержании сульфида более 1 мг/л (рис. 28). АФБ доминируют в слабокислых и нейтральных условиях, но в щелочных условиях, как было показано нами, доминируют цианобактерии.

            Это явление может быть объяснено снижением токсичности сероводорода при повышении рН (Заварзин, 1972; Howsley, Pearson, 1979). На диаграмме рН-S2- показано, как происходит последовательная смена типов сообществ с повышением рН в сульфидсодержащих гидротермах при температуре около 60ºС (рис. 29). При рН менее 7 большинство молекул сероводорода находится в недиссоциированном состоянии и способно легко проникать через клеточную стенку. В составе сообщества доминирует Chloroflexus aurantiacus. При рН более 7 начинает доминировать менее токсичный гидросульфид-ион, и в составе микробного мата появляются цианобактерии. Они располагаются под слоем Chloroflexus aurantiacus, который защищает цианобактерии от воздействия высоких концентраций растворенного в воде сульфида. При рН более 8.5 весь сероводород переходит в гидросульфид-ион и, как было показано нами, в составе мата доминируют цианобактерии. Сравнение оптимумов рН цианобактерий, АФБ и хемотрофных бактерий выделенных из Большереченского источника указывает на то, что доминирующие в микробном мате цианобактерии более приспособлены к высоким рН, чем АФБ. Цианобактерии, подщелачивающие среду в ходе оксигенного фотосинтеза являются алкалофилами, тогда как АФБ и хемотрофные бактерии являются нейтрофилами и алкалотолерантами (рис. 13).

            Нами был обнаружен аноксигенный мат с доминированием Chloroflexus aurantiacus в Аллинском источнике, но необходимо учитывать, что его развитие происходило в области смешения сульфидсодержащих щелочных термальных вод с рН 9.0-9.9 и речных вод с рН 8.3, что опять же подтверждает предположение о контроле распространения микробных сообществ различными формами сульфида. Повышение устойчивости гидросульфид-иона при щелочной реакции среды также может быть причиной отсутствия массового развития термофильных серобактерий при температуре около 70ºС.

             Минерализация также является фактором среды, ограничивающим распространение микробных матов и оказывающим влияние на видовой состав сообщества. В минерализованном источнике Паоха комбинированное воздействие факторов среды исключает развитие термофильного цианобактериального мата и термофильной АФБ Chloroflexus aurantiacus. Цианобактериальный мат обнаружен при температурах ниже 47ºС и доминируют в нем цианобактерии родов Phormidium, Oscillatoria и мезофильная галоалкалофильная пурпурная бактерия Ectothiorhodospira shaposhnikovii.

Микробные сообщества щелочных гидротерм обладают высокой продуктивностью, сравнимой с другими высокопродуктивными экосистемами. Максимальное содержание хлорофилла а составляет 892 мг/м2.  Скорость оксигенного фотосинтеза достигает 3.5 гС/м2 сут, что сравнимо со скоростями оксигенного фотосинтеза в источниках Термофильный (2.3 гС/м2 сут) и Октопус Спринг (4 гС/м2 сут). Скорость аноксигенного фотосинтеза достигает высоких значений в микробных матах источников (5.5 гС/м2 сут) несмотря на то, что в составе микробных матов доминируют цианобактерии. Это может быть объяснено переключением цианобактерий на аноксигенный фотосинтез. Максимальная скорость темновой фиксации - 12.1 гС/м2 сут. Максимальная суммарная продукция достигает 21 гС/м2 сут.

Комбинированное воздействие высокой температуры, рН и сульфида оказывает влияние и на активность биогеохимических процессов по изливу источников. В источниках Гаргинский, Сеюйский и Уринский с невысокими содержаниями сульфида продуктивность микробных матов очень высока, а оптимум продукционных процессов находится при температуре 45-50ºС. Тогда как в Большереченском источнике с высоким содержанием сульфида и наиболее высокими значениями рН наибольшая продуктивность наблюдается при температурах 33-39ºС, а значения продуктивности уступают значениям обнаруженным в бессульфидных источниках.

Процессы терминальной деструкции также обладают высокой интенсивностью. Максимальное значение сульфатредукции достигает 5.5 гS2 сут. Скорость метаногенеза невысока, до 1.5 мгС/м2 сут. Соответственно, через процесс сульфтаредукции расходуется на 2-3 порядка больше органического вещества, что обуславливается высоким содержанием сульфата в термальных водах.

            Высокая интенсивность процесса сульфатредукции приводит к тому, что даже если в водах отсутствует растворенный сульфид, то все равно создаются условия для активной деятельности микроорганизмов цикла серы. Аноксигенные фототрофные бактерии, участвующие в данном цикле, достигают высокой численности в микробных матах щелочных источников (до 107 кл/мл).

            Термофильная алкалотолерантная АФБ Chloroflexus aurantiacus достигает значительной численности в микробных матах слабоминерализованных щелочных гидротерм. В отдельных случаях этот организм даже доминирует в мате. Нами было выделено 10 штаммов Chloroflexus aurantiacus из различных источников. ДНК-ДНК гибридизация с известным штаммом OK-70fl показала, что все они принадлежат к одному виду. Тем не менее, ряд их свойств (температурный оптимум, отношение к кислороду) отличается друг от друга, что свидетельствует о приспособленности штаммов к условиям местообитаний в различных источниках.

Исследованные культуры способны к фотоавтотрофному росту, используя сульфид в качестве донора электронов, но лучше растут в фотогетеротрофных условиях. Кроме того большинство штаммов Chloroflexus aurantiacus хорошо растут в присутствии органических субстратов в аэробных или микроаэробных условиях. Наиболее вероятно они выполняют в сообществе функцию первичного деструктора.

Ранее было показано, что наряду с сульфидом, восстановленное железо может служить донором электронов при аноксигенном фотосинтезе у некоторых мезофильных АФБ (Widdel et al., 1993; Ehrenreich et al., 1994). Наши исследования показали, что изученные штаммы Chloroflexus aurantiacus не способны к фотоавтотрофному росту на восстановленном железе. Но зато в ходе аэробного темнового гетеротрофного роста вокруг нитей образовывались толстые чехлы из окисленного железа. Это может являться одним из механизмов образования ожелезненных микрофоссилий в древних породах, сформированных цианобактериальным матами, в которых кислород поступал в результате оксигенного фотосинтеза.   

В щелочных водах миграция катионогенных элементов, в первую очередь железа, затруднена, поэтому обнаружение у выделенной нами термофильной алкалофильной бактерии Anaerobranca californiensis способности к восстановлению железа представляет большой интерес. Данная способность может быть обусловлена эволюционно. Нами также было показано, что и другие алкалофильные представители рода Anaerobranca тоже обладают способностью к железоредукции.

Участие микробного сообщества в карбонатном минералообразовании изучалось на примере Гаргинского источника. В воде источника натрий доминирует над кальцием, сульфат-ион доминирует над гидрокарбонат-ионом, а также содержится значительные концентрации растворенной кремнекислоты, поэтому факт образования из таких вод карбонатно-кальциевого травертина представляет значительный интерес (Борисенко и др., 1976). Образование травертина не могло происходить в ходе декомпрессии углекислого газа при выходе на поверхность, так как содержания в воде источника углекислого газа, карбоната, гидрокарбоната и кальция слишком низки (Плюснин и др., 2000). Образование травертина наиболее активно происходит в зоне развития микробного мата и, по нашим наблюдениям, тесно связано с его состоянием. Наибольшая активность процесса обнаруживается в зонах с постоянным доступом воды источника и превышением продукции над деструкцией (зоны I, II, III). Здесь происходит формирование щелочного геохимического барьера в ходе оксигенного фотосинтеза в цианобактериальном мате, на котором и происходит осаждение карбоната кальция. Таким образом, микробное сообщество играет ведущую роль в травертинообразовании в Гаргинском источнике.

            Сравнение нейтральных углекислых источников (рис. 30) с высоким содержанием кальция и карбонатов, и сульфатно-натриевого Гаргинского источника, с низким содержанием кальция и карбонатов, показывает, что микробное сообщество играет ведущую роль в травертинообразовании в Гаргинском источнике, формируя щелочной барьер, на котором происходит осаждение карбоната кальция. При рН выше 8.4 образования травертина не происходит в связи с отсутствием кальция. В этой области происходит образование кремневых корок типа гейзерита около выходов источников, наблюдавшееся нами на Большереченском, Аллинском и Уринском источниках.

            Образцы высохшего микробного мата, поверхности травертина и керна травертина Гаргинского источника были исследованы нами с применением электронной микроскопии. В них были обнаружены современные микрофоссилии (МФ) в виде сфер и нитей. Наибольшее количество МФ было обнаружено в высохшем мате. С увеличением глубины в травертине количество микрофоссилий уменьшается в ходе диагенеза.      

ВЫВОДЫ

1.      Высокие значения рН, температуры и содержания сульфида ограничивают распространение фототрофных микробных матов, которые в щелочных гидротермах развиваются при более низкой температуре, чем в нейтральных.

2.      Особенностью щелочных сульфидсодержащих гидротерм, в отличие от нейтральных гидротерм, является отсутствие образования аноксигенных микробных матов. В составе микробных матов щелочных гидротерм доминируют алкалофильные цианобактерии Phormidium spp.

3.      Микробные сообщества пресных и минерализованных щелочных гидротерм отличаются по видовому составу. Термофильная аноксигенная фототрофная бактерия Chloroflexus aurantiacus достигает значительной численности в микробных матах пресных щелочных гидротерм, но отсутствует в минерализованных щелочных гидротермах. В составе сообщества минерализованных гидротерм значительной численности достигает галоалкалофильная аноксигенная фототрофная бактерия Ectothiorhodospira shaposhnikovii

4.      Продуктивность микробных сообществ щелочных гидротерм сравнима с продуктивностью нейтральных гидротерм. Наиболее продуктивными являются сообщества, развивающиеся в температурном диапазоне 35-50ºС. Доминирующим процессом терминальной деструкции является сульфатредукция, роль метаногенеза в деструкции органического вещества незначительна.

5.      Показана экофизиологическая приспособленность термофильной аноксигенной фототрофной бактерии Chloroflexus aurantiacus к условиям местообитаний в различных источниках и их экологических зонах.

6.      Показано, что чистые культуры аноксигенной фототрофной бактерии Chloroflexus aurantiacus могут откладывать окисное железо на поверхности клетки в ходе аэробного темнового роста. Восстановленное железо не является донором электронов для фотоавтотрофного роста у исследованных штаммов. 

7.      Выделен новый вид алкалотермофильной бактерии с бродильным метаболизмом Anaerobranca californiensis, способной к неспецифическому восстановлению широкого ряда неорганических соединений: тиосульфата, элементной серы, полисульфида, железа, селена.

8.      Показано, что цианобактериальный мат играет вважную роль в образовании карбонатно-кальциевого травертина в Гаргинском источнике. Исследование керна травертина показало, что с глубиной в травертине количество микрофоссилий  уменьшается.  

СПИСОК ЛИТЕРАТУРЫ

1.             Аверкин Ю.А. Динамика отложения компонентов из гидротермального раствора при выкипании СО2 // Геохимия. 1987. № 11. С.1580-1585.

2.             Барабанов Л.Н., Дислер В.Н. Азотные термы СССР/ Отв. Ред. Д.г-м.н. В.В.Иванов. – М: Геоминвод ЦНИИ КиФ, 1968.-120с.

3.             Басков Е.А., Суриков С.Н. Гидротермы Земли. – Л.: Недра, 1989. – 245 с.: ил.

4.             Бильдушкинов С.С., Некрасова В.К., Герасименко Л.М.  Роль фотосинтезирующих микроорганизмов в газовом обмене цианобактериального сообщества // Микробиология, 1985. Т.54. с.517-512.

5.             Бонч-Осмоловская Е.А., Горленко В.М., Карпов Г.А., Старынин Д.А. Анаэробная деструкция органического вещества в цианобактериальных матах ист. Термофильного // Микробиология. 1987. Т. 56.  № 6. С. 1022-1028.

6.             Бонч-Осмоловская Е.А., Заварзин Г.А. Термофильные бактерии, восстанавливающие серу, и формирование ими геохимического барьера // Кальдерные микроорганизмы. М.: Наука. 1989.

7.             Бонч-Осмоловская Е.А., Мирошниченко М.Л., Пикута Е.В., Сорокин Д.Ю., Намсараев Б.Б. Бактериальная сероредукция в мелководных гидротермах Юго-Западной части Тихого океана // Микробиология. 1993. Т.62. С.564-573.

8.             Бонч-Осмоловская Е.А., Мирошниченко М.Л., Слободкин А.И., Соколова Т.Г., Карпов Г.А., Кострикина Н.А., Заварзина Д.Г., Прокофьева М.И., Русанов И.И., Пименов Н.В. Биоразнообразие анаэробных литотрофных прокариот в наземных гидротермах Камчатки // Микробиология. 1999. Т.68. С.398-406.

9.             Бонч-Осмоловская Е.А. Термофильные микроорганизмы в морских гидротермальных системах. С. 131-140.// Биология гидротермальных систем. Под ред. А.В. Гебрук, К.Н. Несис, А.П. Кузнецов, А.М. Сагалевич. М., КМК Press, 2002, 543 с. 

10.         Борисенко И.М., Замана Л.В. Минеральные воды Бурятской АССР. – Улан-Удэ: Бурятское книжное изд-во, 1978. –162 с.

11.         Борисенко И.М., Очиров Ю.Ч., Сусленкова Р.М. Состав травертинов из отложений некоторых минеральных источников Забайкалья. Труды геологического института БФ СО АН СССР, Улан-Удэ, 1976, Выпуск 7 (15), с.36-52.

12.         Брянцева И.А., Горленко В.М., Турова Т.П., Кузнецов Б.Б., Лысенко А.М., Быкова С.А., Гальченко В.Ф., Митюшина Л.Л., Осипов Г.А. Heliobacterium sulfidophilum sp. nov. и Heliobacterium undosum sp. nov.: сульфидокисляющие гелиобактерии из термальных сероводородных источников // Микробиология. 2000. Т. 69. №3. С.396-406. 

13.         Венецкая С.Л., Герасименко Л.М., Миллер Ю.М. Роль Chloroflexus aurantiacus в газовом обмене термофильного цианобактериального сообщества // Микробиология. 1987. Т.56. С.865-871.

14.         Весталл Ф., Велш М. Ископаемые бактерии и бактериальные биопленки. С. 68-83. // Бактериальная палеонтология. ПИН РАН, МГУ. Под ред. А.Ю. Розанова. – М.: ПИН РАН, 2002. – 188 с.

15.         Гальченко В.Ф. Микроорганизмы в гидротермальных сообществах. С. 113-130. // Биология гидротермальных систем. Под ред. А.В. Гебрук, К.Н. Несис, А.П. Кузнецов, А.М. Сагалевич. М., КМК Press, 2002, 543 с.

16.         Гебрук А.В., Галкин С.В. Гидротермальный биотоп и гидротермальная фауна: общие положения. С. 13-24. // Биология гидротермальных систем. Под ред. А.В. Гебрук, К.Н. Несис, А.П. Кузнецов, А.М. Сагалевич. М., КМК Press, 2002, 543 с.

17.         Герасименко Л.М., Заварзин Г.А. Обмен Н2, СО2, О2, СН% в цианобактериальных сооществах // Микробиология. 1982. Т.51. С.718-722.

18.         Герасименко Л.М., Карпов Г.А., Орлеанский В.К., Заварзин Г.А. Роль циано-бактериального фильтра в трансформации газовых компонентов гидротерм на примере кальдеры Узон на Камчатке // Журн. Общ. Биол. 1983. №6. с.842-851.

19.         Герасименко Л.М., Крылов И.Н. Посмертные изменения цианобактерий в водорослево-бактериальных пленках термальных источников Камчатки // Докл. АН СССР. 1983. Т.272. №1. С.201-202.

20.         Герасименко Л.М., Миллер Ю.М., Капустин О.А., Заварзин Г.А. Потребление водорода термофильной цианобактерией Mastigocladus laminosus // Микробиология. 1987. Т.56. С.553-558.

21.         Герасименко Л.М. Актуалистическая палеонтология цианобактериальных сообществ // Автореферат диссертации. 2002. ИНМИ РАН. Москва.

22.         Герхардт Ф. и др. (под ред.). Методы общей бактериологии. В 3 т. М.: Мир. 1983.

23.         Головенок В.К. Докембрийские кремневые конкреции: морфология, генезис, значение для познания древнего органического мира // Конкреции докембрия. Л., Наука. 1989. С.94-102.

24.         Голубев В.А. Тепловые и химические характеристики гидротермальных систем Байкальской рифтовой зоны // Сов. геология. 1982. №10. С.100-108.

25.         Голлербах М.М., Косинская Е.К., В.И. Полянский. Определитель пресноводных водорослей СССР. Вып. 2. Синезеленые водоросли. - М.: Советская наука, 1953.

26.         Го Окамото, Окура Т., Гото К. Свойства кремнезема в воде // Геохимия литогенеза. – М.: Иностранная литература. 1963. – 459 с.

27.         Горленко В.М. Биология пурпурных и зеленых бактерий и их роль в круговороте углерода и серы. Дис. … д-ра биол. наук. М.: ИНМИ АН СССР, 1981. С. 696.

28.         Горленко В.М., Бонч-Осмоловская Е.А. Формирование микробных матов в горячих источниках и активность продукционных и деструкционных процессов // Кальдерные микроорганизмы. М: Наука. 1989.

29.         Горленко В.М., Дубинина Г.А., Кузнецов С.И. Экология водных микроорганизмов. М.: Наука, 1977.

30.         Горленко В.М., Кикина О.Г. Определение оптимальных условий роста микроорганизмов с помощью 14С-бикарбоната // Микробиология. 1979. Т. 48. В. 3. С. 430-433.

31.         Горленко В.М., Компанцева Е.И., Пучкова Н.Н. Влияние температуры на распространение фототрофных бактерий в термальных источниках // Микробиология. 1985. Т. 54. №5. С. 848-853.

32.         Горленко В.М., Старынин Д.А., Бонч-Осмоловская Е.А., Качалкин В.И. Продукционные процессы в микробных сообществах горячего источника Термофильного // Микробиология. 1987. Т. 56. С. 872-878.

33.         Горшков А.И., Дриц В.А., Дубинина Г.А., Богданова О.А., Сивцов А.В. Роль бактериальной деятельности в формировании гидротермальных Fe-Mn-образований северной части бассейна Лау (юго-западная часть Тихого океана) // Изв. Акад. Наук. Сер. геол. 1992. №9. с.84-93.

34.         Дубинина Г.А. Биология железобактерий и их геохимическая деятельность. Дис. … д-ра. Биол. наук. М.: ИНМИ АН СССР, 1977.

35.         Заварзин Г.А. Бактерии и состав атмосферы. М.: Наука. 1972. (а)

36.         Заварзин Г.А. Литотрофные микроорганизмы - М.: Наука, 1972. (б)

37.         Заварзин Г.А. Эпиконтинентальные содовые водоемы как предполагаемые реликтовые биотопы формирования наземной биоты // Микробиология. 1993. Т.62. Вып.5. с.789-800.

38.         Заварзин Г.А. Становление биосферы // Микробиология. 1997. Т.66. с.725-734.

39.         Заварзин Г.А. Биоразнообразие как часть биосферно-геосферной системы возникновения порядка из хаоса // Методология биологии: новые идеи (синергетика, семиотика, коэволюция). Отв. Ред. О.Е.Баксанский. – М.: Эдиториал УРСС, 2001.

40.         Заварзин Г.А. Микробный геохимический цикл кальция // Микробиология. 2002. Т.71. с.5-22.

41.         Заварзин Г.А., Колотилова Н.Н. Введение в природоведческую микробиологию: Учебное пособие. – М.: Книжный дом “Университет”, 2001. –256 с.

42.         Замана Л.В. О происхождении сульфатного состава азотных терм Байкальской рифтовой зоны // Доклады АН. 2000. Т.372. №3. С.361-363.(а)

43.         Замана Л.В. Петрогенная геохимическая модель азотных терм Байкальской рифтовой зоны // Фундаментальные проблемы воды и водных ресурсов на рубеже третьего тысячелетия: Материалы Международной научной конференции. 3-7 сентября 2000 г.– Томск: Изд-во НТЛ, 2000. с.199-203. (б)

44.         Иванов М.В. Применение изотопов для изучения интенсивности процесса редукции сульфатов в озере Беловодь // Микробиология. 1956. Т. 25. №3. С. 305-309.

45.         Илялетдинов А.Н. Микробиологические превращения металлов. – Алма-Ата. Наука. 1984.

46.         Кеппен О.И., Красильникова Е.Н. Рост Chloroflexus aurantiacus в фотоавтотрофных условиях. /Микробиология. 1986. Т.55.Вып.5. С.879-882.

47.         Кирюхин В.К., Крайнов С.Р., Швец В.М. Гидрогеохимическое значение и методы изучения органических форм миграции элементов. С. 33-38. В сборнике “Гидрогеохимические методы поисков рудных месторождений”. – Новосибирск: Наука, 1982.

48.         Компанцева Е.И., Горленко. В.М. Фототрофные сообщества в некоторых термальных источниках озера Байкал // Микробиология. 1988. Т. 57. №5. С. 841-846.

49.         Кондратьева Е.Н., Красильникова Е.Н. Использование тиосульфата Chloroflexus aurantiacus // Микробиология. 1988. Т.57. Вып. 3. С.357-360.

50.         Крайнов С.Р., Швец В.М. Основы геохимии подземных вод. – М.: Недра, 1980.

51.         Крайча Я. Газы в подземных водах. – М.: “Недра”, 1980.

52.         Красильникова Е.Н., Кеппен О.И., Горленко В.М., Кондратьева Е.Н. Рост Chloroflexus aurantiacus на средах с разными органическими соединениями и пути их метаболизма // Микробиология. 1986. Т.55. Вып.3. С.425-429.

53.         Красильникова Е.Н., Кондратьева Е.Н. Рост Chloroflexus aurantiacus в анаэробных условиях в темноте и метаболизм органических субстратов // Микробиология. 1987. Т.56.Вып.3. С.357-360.

54.         Красильникова Е.Н., Кондратьева Е.Н. Использование Chloroflexus aurantiacus разных соединений серы // Микробиология. 1988. Т.57.Вып.3. С.507-508.

55.         Крылов И.Н., Тихомирова Н.С. К образованию кремнистых микрофоссилий // Палеонтол. журнал. 1988. №3. С.3-9.

56.         Кузнецов С.И., Романенко В.И. Микробиологическое изучение внутренних водоемов. – Л.: Изд-во АН СССР, 1963. - 129 с.

57.         Лауринавичус К.С., Беляев С.С. Определение интенсивности микробиологического образования метана радиоизотопным методом // Микробиология. 1978. Т. 47. №6. С.1115-1117.

58.         Леин А.Ю., Пименов Н.В. Роль бактериальной продукции на активных гидротермальных полях в общем балансе органического углерода в океане. С. 320-328. // Биология гидротермальных систем. Под ред. А.В. Гебрук, К.Н. Несис, А.П. Кузнецов, А.М. Сагалевич. М., КМК Press, 2002, 543 с.

59.         Ломоносов И.С. Геохимия и формирование современных гидротерм Байкальской рифтовой зоны. – Новосибирск.: Наука, 1974.

60.         Мартынов П.И. Некоторые данные о горячих источниках Баргузинского заповедника.// Тр. Баргузинского гос. заповедника. 1960. Вып.2. С. 147-154.

61.         Намсараев Б.Б., Дубинина Г.А., Бонч-Осмоловская Е.А., Старынин Д.А., Грабович М.Ю., Качалкин В.М., Нестеров А.И., Горленко В.М. 1991. Участие бактерий круговорота углерода, серы и железа в деструкции органического вещества в бентосных сообществах бухты Кратерной. Мелководные газогидротермы и экосистема бухты Кратерной (вулкан Ушишир, Курильские о-ва). Кн. 1. Функциональные характеристики. Ч.1. (ред. А.В. Жирмунский, В.Г. Тарасов), с.154-171. Владивосток, ДВО РАН.

62.         Намсараев Б.Б., Бонч-Осмоловская Е.А., Мирошниченко М.Л., Пикута Е.В., Качалкин В.И., Миллер Ю.М., Пропп Л.И., Тарасов В.Г. Микробиологические процессы круговорота углерода в мелководных гидротермах Западной окраины Тихого океана // Микробиология. 1994. Т.63. с.100-111.

63.         Орлеанский В.К., Герасименко Л.М. Лабораторное моделирование термофильного циано-бактериального сообщества // Микробиология. 1982. Т.51. №4. С.538-542.

64.         Перельман А.И. Геохимия ландшафтов. М.: “Высшая школа”. 1966.

65.         Перельман А.И. Геохимия элементов в зоне гипергенеза. М., “Недра”, 1972, 288 с.

66.         Перельман А.И. Геохимия природных вод. М.: “Наука”. 1982.

67.         Пиневич А.В., Аверина С.Г. Оксигенная фототрофия: Руководство по эволюционной клеточной биологии. СПб.: Изд-во С.-Петерб. Ун-та, 2002. 236 с.

68.         Плюснин А.М., Суздальницкий А.П., Адушинов А.А., Миронов А.Г. Особенности формирования травертинов из углекислых и азотных термальных вод в зоне Байкальского рифта // Геология и геофизика. 2000. Т.41. №4. С.564-570.

69.         Посохов Е.В. Общая гидрогеохимия. Л., “Недра”, 1975. 208 с.

70.         Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа природных вод. 3-е изд. - М.: Недра, 1970.

71.         Семихатов М.А., Раабен М.Е., Сергеев В.Н., Вейс А.Ф., Артемова О.В. Биотические события и положительная изотопная аномалия карбонатного углерода 2.3-2.06 млрд. лет назад // Стратиграфия. Геол. корреляция. 1999. Т.7. №5. с.3-27.

72.         Сергеев В.Н. Окремненные микрофоссилии докембрия и кембрия Урала и Средней Азии. Тр. ГИН РАН; Вып. 474. – М.: Наука, 1992. – 139 с.

73.         Соломин Г.А., Крайнов С.Р. Щелочные составляющие природных и сточных щелочных вод, геохимические процессы их нейтрализации кислыми и околонейтральными подземными водами // Геохимия. 1998. №2. С.183-201.

74.         Стащук М.Ф. Проблема окислительно-восстановитеьного потенциала в геологии. – М.: Недра. 1968.

75.         Храпцова Г.И., Цаплина И.А., Серегина Л.М., Логинова Л.Г. Термофильные бактерии горячих источников Бурятии // Микробиология. 1984. Т.53. Вып.1. с. 137-141.

76.         Шпейзер Г.М., Васильева Ю.К., Гановичева Г.М., Минеева Л.М., Родионова В.А., Ломоносов И.С., Ванг Янсинь. Органические вещества в минеральных водах горноскладчатых областей Центральной Азии // Геохимия. 1999. №3. с. 302-311.

77.         Юрков В.В., Горленко В.М. Применение электронной сканирующей микроскопии для анализа вертикальной структуры микробных сообществ альгобактериальных матов на стеклах обрастания // Микробиология 1989. Т. 58. Вып. 4. С. 676-678.

78.         Юрков В.В., Горленко В.М. Новый вид пресноводных аэробных бактерий Erythrobacter sibiricus sp. nov., содержащих бактериохлорофилл а // Микробиология. 1990. Т. 59. №1. С. 120-125.

79.         Юрков В.В., Горленко В.М. Новый род пресноводных аэробных бактерий Roseococcus gen.nov., содержащих бактериохлорофилл а // Микробиология. 1991. Т 60. №5. С. 902-907.

80.         Юрков В.В., Горленко В.М. Новый штамм RB-5 пурпурной несерной бактерии Rhodopseudomonas blastica, выделенный из сульфидного щелочного источника // Микробиология. 1992. Т. 61. №1. С. 103-108. 

81.         Юрков В.В., Горленко В.М., Митюшина Л.Л., Старынин Д.А. Влияние лимитирующих факторов на структуру фототрофных сообществ в Большереченских термальных источниках // Микробиология. 1991. Т. 60. №6. С.129-138.

82.         A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12. // Ed. Richard A. Vollenweider. Oxford etc.: Blackwell. 1969.

83.         Anderson K.L., Tayne T.A., Ward D.M. Formation and fate of fermentation products in hot spring cyanobacterial mats // Appl. Environ. Microbiol. 1987. V.53. p.2343-2352.

84.         Barns S.M., Fundyaga R.E., Jeffries M.W., Pace N.R. Remarkable archaeal diversuty detected in a Yellowstone national park hot spring environment //Proc. Natl. Acad. Sci. USA. 1994. V.91. p.1609-1613.    

85.         Barns S.M., Delwiche C.F., Palmer J.D., Pace N.R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences // Proc. Nat. Acad. Sci. USA. 1996. V. 93. p. 9188-9193.

86.         Baross J.A., Hoffman S.E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life // Origins of life. 1985. V. 15. p. 327-345.

87.         Barret E.L., Clark M.A. Tetrationate reduction and production of  hydrogen sulfide from thiosulfate // Microbiological reviews. June 1987. p.192-205.

88.         Bateson M.M., Wiegel J., Ward D.M. Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats // Syst. Appl. Microbiol. 1989. V.12. p.1-7.

89.         Bauld J. Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia // Eds. Cohen Y., Castenholz R.W., Halvorson H.O. MBL lectures in biology. V.3. Microbial mats: Stromatolites. Alan R. Liss, Inc. NewYork. 1984, p. 39-58.

90.         Bauld J., Brock T.D. Ecological studies of Chloroflexus, a gliding photosynthetic bacterium // Arch. Microbiol. 1973. V.92. p.267-284.

91.         Bauld J., Brock T.D. Algal excretion and bacterial assimilation in hot spring algal mats // J. Phycol. 1974. V.10. p.101-106.

92.         Belkin S., Wirsen C.O., Jannasch H.W. Biological and abiological sulfur reduction at high temperatures // Appl. Environ. Microbiol. 1985. V.49. p.1057-1061.

93.         Ben-Bassat A., Zeikus J.G. Thermobacteroides acetoethylicus gen. nov. and spec. Nov., a new chemoorganotrophic, anaerobic thermophilic bacterium // Arch. Microbiol. 1981. V.128. p.365-370.

94.         Bender J., Rodriguez-Eaton S., Ekanemesang U.M., Philips P. Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats // Appl. Environ. Microbiol. 1994. V.60. p.2311-2315.

95.         Bergey’s manual of systematic bacteriology. V. 3 // Ed. James T. Staley. Baltimore etc.: Williams&Wilkins. 1989

96.         Bergey’s manual of systematic bacteriology / D.R. Boone, R.W. Castenholz (eds) v.1; G.M. Garrity, editor-in-chief. – 2nd ed. 2001. Springer-Verlag. New York, Berlin, Heidelberg. 

97.         Blank C.E., Cady S.L., Pace N.R. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park // Appl. Environ. Microbiol. 2002. V.68. p.5123-5135.

98.         Blцchl E., Rachel R., Burggraf S., Hafenbradl D., Jannsch H.W., Stetter K.O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113єC // Extrmophiles. 1999. V.1. p.14-21. 

99.         Blotevogel K.H., Fisher U., Mocha M., Janssen S. Methanobacterium thermoalcaliphilum spec. Nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen // Arch. Microbiol. 1986. V.142. p.211-217.

100.     Bogdanov Y.A., Lisitzin A.P., Binns R.A., Gorshkov A.I., Gurvich E.G., Dritz V.A., Dubinina G.A., Bogdanova O.Y., Sivkov A.V., Kuptsov V.M. Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea  // Mar. Geol. 1997. V.142. p.99-117.

101.     Brock T.D. Micro-organisms adapted to high temperatures // Nature. 1967. V. 214. P.882-885. (a) 

102.     Brock T.D. Relationship between standing crop and primary productivity along a hot spring thermal gradient // Ecology. 1967. V. 48. P. 566-571. (б)

103.     Brock, T. D. Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New York, N.Y. 1978.

104.     Brock T.D., Brock M.L. The measurement of chlorofill, primary productivity, photophosphorylation, and macromolecules in benthic algal mats // Limnology and Oceanography. 1967. V.12. p.600-605. 

105.     Brock T.D., Brock M.L. Effect of light intensity on photosynthesis by thermal algae adapted to natural and reduced sunlight // Limnol. Oceanogr. 1969. V.14. p.334-341.

106.     Brock T.D., Brock M.L., Bott T.L., Edwards M.R. Microbial life at 90°C: the sulfur bacteria of Boulder spring // J. Bacteriol. 1971. V.107. p.303-314.

107.     Caldwell D.E., Caldwell S.J., Laycock J.P. Thermotrix thioparus gen. Et sp. nov. A facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature // Can. J. Microbiol. 1976. V.22. p.1509-1517.

108.     Castenholz R.W. Thermophilic blue-green algae and the thermal environment // Bacteriol. Rewiews. 1969. V. 33. No 4. P. 476-504.

109.     Castenholz R.W. The effect of sulfide on the blue-green algae pf hot springs. I. New Zealand and Iceland // J.Phycol. 1976. V.12. p.54-68.

110.     Castenholz R.W. The effect of sulfide on the blue-green algae pf hot springs. II. Yellowstone National Park // Microbial Ecology. 1977. V.3. p.79-105.

111.     Castenholz R.W. Composition of hot spring microbial mats: a summary // In Cohen, Castenholz and Halvorson (Eds), Microbial Mats: Stromatolites. 1984. Alan R. Liss, New York. P.101-119.

112.     Castenholz R.W., Utkilen H.C. Physiology of sulfide tolerance in a thermophilic Oscillatoria // Arch. Microbiol. 1984. V. 138. P. 299-305.

113.     Castenholz R.W., Bauld J., Jorgenson B.B. Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. // FEMS Microbiology Ecology. 1990. V.74. P. 325-336.

114.     Castenholz R.W., Pierson B.K. Ecology of thermophilic anoxygenic phototrophs // In Blankenship, Madigan, Bauer (eds): Anoxygenic photosynthetic bacteria. 1995. Kluwer Academic publishers. Netherlands. P.87-103.

115.     Chafetz H.S., Folk R.L. Travertines: depositional morphology and the bacterially constructed constituents // Journ. Sedim. Petrol. 1984. V.54. p.289-316. 

116.     Chafetz H.S., Rush P.F., Utech N.M. Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system // Sedimentology. 1991. V.38. p.107-126.

117.     Chrisostomos S, Patel B.K., Dwivedi P.P., Denman S.E. Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanicaly heated waters of an Indian artesian aquifer // Int. J. Syst. Bacteriol. 1996. V.46. p.497-501.

118.     Chung A.P., Rainey F., Nobre M.F., Burghardt J., da Costa M.S. Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids // Int. J. Syst. Bacteriol. 1997. V.47. p.1225-1230.

119.     Cohen Y., Padan E., Shilo M. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica // J. Bacteriol. 1975. V. 123. P. 855-861.

120.     Cohen Y., Jorgensen B.B., Revsbech N.P. Poplawski R. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria // Appl. Environ. Microbiol. 1986. V.51, p. 398-407.

121.     Cohen Y. The Solar lake cyanobacterial mats: strategies of photosynthetic life under sulfide // In Cohen, Castenholz and Halvorson (Eds), Microbial Mats: Stromatolites, Alan R. Liss, New York. 1984. P.133-148.

122.     Cohen Y., Gorlenko V.M., Bonch-Osmolovskaya E.A. Interaction of sulphur and carbon cycles in microbial mats. In: Evolution of the global biogeochemical sulphur cycle. Brimblecombe P., Lein A.Yu. (eds.). SCOPE Published by John Wiley & Sons Ltd. 1989. P. 191-238.

123.     Cook T.L., Stackes D.S. Biogeological mineralization in deep-sea hydrothermal deposits // Science. 1995. V.267. p.1975-1979.

124.     De Ley J., Cattoir H., Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates // Eur. J. Biochem. 1970. V.12. p.133-142.

125.     Dismukes G.C., Klimov V.V., Baranov S.V., Kozlov Yu.N., DasGupta J., Tyryshkin A. The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis // Proc. Nac. Acad. Sci. 2001. V.98. p.2170-2175.

126.     Dobbin P.S., Warren L.H., Cook n.J., McEwan A.G., Powell A.K., Richardson D.J. Dissimilatory iron (III) reduction by Rhodobacter capsulatus // Microbiology. 1996. V.142. p.765-774.

127.     Doemel W.N., Brock T.D. Structure, growth and decomposition of laminated algal-bacterial mats in alkaline hot springs // Appl. Environ. Microbiol. 1977, 34: 433-452.

128.     Duckworth A.W., Grant W.D., Jones B.E., van Steenbergen R. Phylogenetic diversity of soda lake alkaliphiles // FEMS Microbiol. Ecol. 1996. V.19. p.181-191.

129.     Duhig N.C., Davidson G.J., Stolz J. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia // Geology. 1992. V.20. p.511-514.

130.     Ehrenreich A., Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism // Appl. Environ. Microbiol. 1994. V.60. p.4517-4526.

131.     Ehrlih H.L. Geomicrobiology. Marcell Dekker, Inc., 1981. New York, N.Y.

132.     Ehrlih H.L. Microbes as geologic agents: their role in mineral formation // Geomicrobiol. J. 1999. V.16. P.135-154. 

133.     Emerson D., Moyer C.L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition // Appl. Environ. Microbiol. 2002. V.68. p.3085-3093.

134.     Elsgaard L., Prieur D., Mukwaya G.M., Jorgensen B.B. Thermophilic sulfate reduction in hydrothermal sediment of lake Tanganyika, East Africa // Appl. Environ. Microbiol. 1994. V.60. p.1473-1480.

135.     Engle M., Li Y., Woese C., Wiegel J. Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. // Int. J. Syst. Bacteriol. 1995. V.45. p.454-461.

136.     Ferris, F. G., Beveridge T. J., Fyfe W. S. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature. 1986. V.320. p. 609-611.

137.     Ferris M.J., Ruff-Roberts A.L., Kopczynski E.D., Bateson M.M., Ward D.M. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat // Appl. Environ. Microbiol. 1996. V.62. p.1045-1050.

138.     Ferris M.J., Nold S.C., Revsbech N.P., Ward D.M. Population structure and physiological changes within a hot spring microbial mat community following disturbance // Appl. Environ. Microbiol. 1997. V.63. p.1367-1374.

139.     Fortin D., Ferris F.G. Precipitation of iron, silica, and sulfate on bacterial cell surfaces // Geomicrobiol. J. 1998. V.15. #4. P.309-324. 

140.     Fouke B.W., Farmer J.D., Des Marais D.J., Pratt L., Sturchio N.C., Burns P.C., Discipulo M.K. Depositional facies and aqueous-solid geochemistry of travertine depositing hot springs (Angel terrace, Mammoth hot springs, Yellowstone national park, U.S.A.) // J. Sedimentary Research. 2000. V.70. p.565-585.

141.     Garrels R.M., Christ C.L. Solutions, minerals and equilibria. Harper&Row, New York.  1965.

142.     Gerdes G., Krumbein W.E., Holtkamp E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha // Eds. Friedman G.M., Krumbein W.E. Ecological studies. V.53. Hypersaline ecosystems: The Gavish Sabkha. Berlin etc. Springer-Verlag.1985. P. 238-266.

143.     Giovannoni S.J., Revsbech N.P., Ward D.M., Castenholz R.W. Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats // Arch. Microbiol. 1987. V.147. p.80-87.

144.     Godfroy A., Meunier J.R., Guezennee J., Lesongeur F., Raguenes G., Rembault A., Barbier G. Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin // Int. J. Syst. Bacteriol. 1996. V.46. p.1113-1119.

145.     Golubic S. Organisms that build stromatolites // In Stromatolites, Developments in sedimentology. 1976. V.20. M.R.Walter (ed.) Elsevier. Amsterdam-Oxford-New-York. P.113-126.

146.     Grant W.D., Tindall B.J. The alkaline saline environment // In: Halophilic Bacteria (Rodriguez, Valera F.,Ed.) p. 31-67. CRC Press. USA. 1986.

147.     Guerrero R., Mas J. Multilayered microbial communities in aquatic ecosystems: growth and loss factors // In Microbial mats: phisiological ecology of benthic microbial communities. 1989. ASM. Washington

148.     Hanada S., Hiraishi A., Shimada K., Matsuura K. Isolation of Chloroflexus aurantiacus species and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure // J. Gen. Appl. Microbiol. 1995. V. 41. P. 119-130. (a)

149.     Hanada S., Hiraishi A., Shimada K., Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement // Int. J. Syst. Bacteriol. 1995. V.45. p.676-681 (b)

150.     Hanada S., Takaichi S., Matsuura K., Nakamura K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes // Int. J. Syst. Evol. Microbiol., 2002. V.52, p.187-193.

151.     Heda G.D., Madigan M.T. Utilization of amino acids and lack of diazotrophy in the thermophilic anoxygenic phototroph Chloroflexus aurantiacus // J. Gen. Microbiol. 1986. V.132. p.2469-2473.

152.     Hiraishi A., Umezawa T., Yamamoto H., Kato K., Maki Y. Changes in quinone profiles of hot spring microbial mats with a thermal gradient // Appl. Environ. Microbiol. 1999. V.65. p.198–205.

153.     Holm-Hansen O. Ecology, physiology, and biochemistry of blue-green algae // Annu. Rev. Microbiol. 1968. V.22. p.47-70. 

154.     Horikoshi K. Microorganisms in alkaline environments. 1990. Kodansha. Tokyo.

155.     Howsley R, Pearson H.W. pH dependent sulfide toxicity to oxygenic photosynthesis in cyanobacteria // FEMS Micro. Letters. 1979. V.6. p. 287-292.

156.     Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K.O. Thermocrinis ruber gen.nov., sp.nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone national park // Appl. Envir. Microbiol. 1998. V.64. p.3576-3583.  

157.     Hugenholtz P., Pitulle C., Hershberger K.L., Pace N.R. Novel division level bacterial diversity in a Yellowstone hot spring // J. Bacteriol. 1998. V.180. p.366-376. 

158.     Iizasa K., Kawasaki K., Maeda K., Matsumoto T., Saito N., Hirai K. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Paciffic // Mar. Geol. 1998. V.145. p.1-21.

159.     Inagaki F., Motomura Y., Ogata S. Microbial silica deposition in geothermal hot waters // Appl. Microbiol. Biotechnol. 2003. V.60. p.605-611.

160.     Jannasch H.W., Mottl M.J. Geomicrobiology of deep-sea hydrothermal vents // Science. 1985. V.229. p.717-725.

161.     Jones B., Renaut R.W. Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperature above 90°C: evidence from Kenya and New Zealand // Can. J. Earth Sci. 1996. V.33. p.72-83.

162.     Jones, B., Renaut R. W. Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile // Sedimentology. 1997. V.44. p.287-304.

163.     Jones, B., Renaut R. W., Rosen M. R. Vertical zonation of biota in microstromatolites associated with Hot Springs, North Island, New Zealand // Palaios 1997. V.12. p.220-236. (а)

164.     Jones, B., Renaut R. W., Rosen M. R. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand // J. Sediment. Res. 1997. V.67. p.88-104. (б)

165.     Jorgensen B.B., Nelson D.C. Bacterial zonation, photosynthesis and spectral light distribution in hot spring microbial mats of Iceland // Microb. Ecol. 1988. V.16. p.133-148. 

166.     Jorgensen B.B., Zawacki L.X., Jannsch H.W. Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California) // Deep-Sea Res. 1990. V.37. p.695-710.

167.     Juniper S.K., Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites // Can. Mineral. 1988. V.26. p.859-869.

168.     Karl D.M., Wirsen C.O., Jannasch H.W. Deep-sea primary production at the Galapagos hydrothermal vents // Science. 1980. V.207. p.1345-1347.

169.     Kashefi K., Holmes D.E., Reysenbach A., Lovley D.R. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. // Appl. Environ. Microbiol. 2002. V.68. p.1735-1742.

170.     Kashefi K., Lovley D.R. Reduction of Fe(III) Mn(IV) and toxic metals at 100°C by Pyrobaculum islandicum // Appl. Environ. Microbiol. 2000. V.66. p.1050-1056.

171.     Keller M., Brown F.-J., Dirmeier R., Hafenbradl D., Burggraf S., Rachel R., Stetter K.O. Thermococcus alkaliphilus sp. nov., a  new hyperthermophilic archaeum growing on polysulfide at alkaline pH // Arch. Microbiol. 1995. V.164. p.390 – 395.

172.     Kieft T.L., Fredrickson J.K., Onstott T.C., Gorby Y.A., Kostandarites H.M., Bailey T.J., Kennedy D.W., Li S.W., Plymale A.E., Spadoni C.M., Gray M.S. Dissimilatory reduction of Fe(III) and other electrone acceptors by a Thermus isolate // Appl. Environ. Microbiol. 1999. V.65. p.1224-1221.

173.     Knoll A.H., Golubic S. Anatomy and taphonomy of a Precambrian algal stromatolite // Precambr. Res. 1979. V. 10. #1/2. P. 115-151.

174.     Knoll A.H. The distribution and evolution of microbial life in the late Proterozoic era // Ann. Rev. Microbiol. 1985. V.39. p. 391-417.

175.     Knoll A.H. Archean and Proterozoic paleontology // In: Jansonius J.&McGregor D.C. (eds.), Palynology: principles and applications; American association of stratigraphic palynologists foundation. 1996. V.1. p.51-80.

176.     Konhauser K.O., Ferris F.G. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations // Geology. 1996. V.24. p.323-326.

177.     Konhauser K.O., Phoenix V.R., Bottrell S.H., Adams D.G., Head I.M. Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites // Sedimentology. 2001. V.48. p.415-433.

178.     Konopka A. Accumulation and utilization of polysaccharide by hot-spring phototrophs during a light-dark transition // FEMS Microb. Ecol. 1992. V. 102. P.27-32. 

179.     Kotelnikova S.V., Obraztsova A.Y., Gongadze G.M., Laurinavichius K.S. Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge // Syst. Appl. Microbiol. 1993. V.16. p.427-434.

180.     Krienitz L., Ballot A., Kotut K., Wiegand C., Putz S., Metcalf J.S., Codd G.A., Pflugmacher S. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya // FEMS Microbiol. Ecol. 2003. V.43. p.141-148.

181.     Krulwich T.A., Guffanti A.A. Alkalophilic bacteria // Annu. Rev. Microbiol. 1989. V.43. p.435-463.

182.     Li Y., Mandelco L., Wiegel J. Isolation and characterization of moderately thermophilic anaerobic alkaliphile Clostridium paradoxum sp. nov. // Int. J. Syst. Bacteriol. 1993. V.43. p.450 – 460.

183.     Li Y, Engle M., Mandelco L., Wiegel J. Clostridium thermoalkaliphilum sp. nov., an anaerobic and termotolerant facultative alkaliphile // Int. J. Syst. Bacteriol. 1994. V.44. p.111 – 118.

184.     Little C.T.S., Herrington R.J., Heymon R.M., Danelian T.D. Early Jurrasic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains, California // Geology. 1999. V.27. p.167-170.

185.     Madigan M.T., Brock T.D. Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium // J. Bacteriol. 1975. V.122. p.782-784.

186.     Madigan M.T., Takigiku R., Lee R.G., Gest R., Hayes J.M. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations // Appl. Environ. Microbiol. 1989. V.55. p.639-644.

187.     Marmur J. A procedure for the isolation DNA from microorganisms // J. Molecular. Biol. 1961. V.3. p.208-218.

188.     Marteinsson V.T., Kristjansson J.K., Kristmannsdottir H., Dahlkvist M., Saemundsson K., Hannington M., Petursdottir S.K., Geptner A., Stoffers P. Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, Northern Iceland, and a novel thermal microbial habitat // Appl. Environ. Microbiol. 2001. V.67. p.827-833.

189.     Mathrani I.M., Boone D.R., Mah R.A., Fox G.E., Lau P.P. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen // Int. J. Syst. Bacteriol. 1988. V.38. p.139-142.

190.     Moezelaar R., Bijvank S.M., Stal L.J. Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes // Appl. Environ. Microbiol. 1996. V.62. p.1752-1758.

191.     Moody M.D., Dailey H.A. Ferric iron reductase of Rhodopseudomonas sphaeroides // J. Bacteriol. 1985. V.163. p.1120-1125.

192.     Moyer C.L., Dobbs F.C., Karl D.M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii // Appl. Environ. Microbiol. 1995. V.61. p.1555-1562.

193.     Nakagawa T., Fukui M. Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient // J. Gen. Appl. Microbiol. 2002. V.48. p.211-222.

194.     Nisbet E.G. RNA, hydrothermal systems, zeolites and the origin of life // Episodes. 1986. V. 9. p. 83-89.

195.     Nold S.C., Kopczynsky E.D., Ward D.M. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat // Appl. Envir. Microbiol. 1996. V.62. N.2. p. 3917-3921.

196.     Nubel U., Bateson M.M., Vandieken V., Wieland A., Kuhl M., Ward D.M. Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats // Appl. Environ. Microbiol. 2002. V.68. p.4593-4603.

197.     Oehler J.H., Schopf J.W. Artificial microfossils: experimental studies of permineralisation of blue-green algae in silica // Science. 1971. V.174. p.1229-1231.

198.     Odintsova E., Jannasch H., Mamone J., Langworthy T. Thermotrix azorensis sp. nov., an oblogately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium // Int. J. Syst. Bacteriol. 1996. V.46. p.422-428.

199.     Okamura K., Hisada T., Hiraishi A. Isolation and characterisation of phototrophic purple nonsulfur bacteria from hot spring Chloroflexus mats // Abstracts of 11th International symposium on phototrophic prokaryotes. August 24-29, 2003. Tokyo, Japan. P. 154.

200.     Oremland, R.S., Dowdle P.R., Hoeft S., Sharp J.O., Schaefer J.K., Miller L.G., Blum J.S., Smith R.L., Bloom N.S., Wallschlaeger D. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono lake, California // Geohim. Cosmochim. Acta. 2000. V.64. p.3073-3084.

201.     Oremland, R.S., Miller L.G., Whiticar M.J. Sources and flux of natural gases from Mono Lake, California // Geohim. Cosmochim. Acta. 1987. V.51. p.2915-2929.

202.     Oren, A., Shilo M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation // Arch. Microbiol. 1979. V.122. p. 77–84. 

203.     Owen R.J., Hill L.R. Lapage S.P. Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers. 1969. V. 7. P. 503-516.

204.     Oxburgh, R., Broecker W.S., Wannikhof R.H. The carbon budget of Mono lake // Global. Biogeochem. Cycles. 1991. V.5. p.359-372.

205.     Pentecost A. Formation of laminate travertines at Bagno Vignone, Italy // Geomicrobiol. J. 1994. V.12.  P.239-252. 

206.     Pentecost A. Significance of the biomineralizing microniche in a Lyngbia (Cyanobacterium) travertine // Geomicrobiol. J. 1995. V.13. p.213-222.

207.     Pfennig N., Lippert K. D. Uber das Vitamin B12 – Bedurfnis phototropher Schwefelbackterien // Arch. Mikrobiol 1966.V.55. p.245 – 256.

208.     Pierson B.K., Castenholz R.W. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus gen. and sp. nov. // Arch. Microbiol. 1974. V.100. p.5-24.

209.     Pierson B.K., Giovannoni S.J., Castenholz R.W. Physiological ecology of a gliding bacterium containing bacteriochlorophyll a //Appl. Environ. Microbiol. 1984. V.47. p.576-584.

210.     Pierson B.K., Giovannoni S.J., Stahl D.A., Castenholz R.W.  Heliothrix oregonesis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophill a // Arch. Microbiol. 1985. V.142. p.164-167.

211.     Pierson B.K., Parenteau M.N., Griffin B.M. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring// Appl. Environ. Microbiol. 1999. V.65. p.5474-5483.

212.     Pierson B.K., Parenteau M.N. Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs // FEMS Microb. Ecol. 2000. v.32. p.181-196.

213.     Pikuta E.,  Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius K. Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium // Int. J. Syst. Microbiol. 2000. V.50.p.25-33.

214.     Preat A., Mamet B., De Ridder C., Boulvain F., Gillan D. Iron bacterial and fungal mats, Bajocian stratotype (mid-Jurrasic, northern Normandy, France) // Sediment. Geol. 2000. V.137. p.107-126.

215.     Prowe S.G., Antranikian G. Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobicaly at high pH and temperature // Int. J. Syst. Evol. Microbiol. 2001. V.51. p.457-465.

216.     Puteanus D, Glasby D.P., Soffers P., Kunzendorf H. Hydrothermal iron-rich deposits from the teahitia-mehitia and MacDonald hot-spot areas, Southwest Pacific // Mar. Geol. 1991. V.98. p.389-409.

217.     Ramsing N.B., Ferris M.J., Ward D.M. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat // Appl. Environ. Microbiol.2000.V.66.p.1038–1049.

218.     Reysenbach A.L., Wickham G.S., Pace N.R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus spring, Yellowstone national park // Appl. Environ. Microbiol. 1994. V.60. p.2113-2119.

219.     Reysenbach A.L., Ehringer M., Hershberger K. Microbial diversity at 83 degrees C in Calcite springs, Yellowstone National Park: another environment where Aquificales and “Korarchaeota” coexist // Extremophiles. 2000. V.4. p.61-67. (а)

220.     Reysenbach A.-L., Longnecker K., Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic ridge hydrothermal vent // Appl. Environ. Microbiol. 2000. V.66. p.3798-3806. (б)

221.     Reynolds J. The use of lead citrate of high pH as electrone opaque in electrone microscopy //J. Cell. Biol. 1963. V. 17. №1. P.208-218.

222.     Revsbech N.P., Ward D.M. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat // Appl. Environ. Microbiol. 1984. V. 48. №2. P. 270-275.

223.     Richardson L.L., Castenholz R.W. Enhanced survival of the cyanobacterium Oscillatoria terebriformis in darkness under anaerobic conditions // 1987. Appl. Environ. Microbiol. V. 53. P.2151-2158.

224.     Roy A.B., Trudinger P.A. The biochemistry of inorganic compounds of sulphur. Cambridge University Press. 1970. Cambridge.

225.     Ryter A., Kellenberger E. Etude an microscope electronique des plasmes contenant de l’acide deoxyribonucleique des nucleodes des bacteries en croissances active // Z. Naturforsch. 1958. B. 13b. S. 597-605.

226.     Ruff-Roberts A.L., Kuenen J.G., Ward D.M. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats // Appl. Envir. Microbiol. 1994. V.60. p.697-704.

227.     Sandbeck K.A., Ward D.M. Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats // Appl. Environ. Microbiol. 1981. V.41. p.775-782.   

228.     Sandbeck K.A., Ward D.M. Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone and Islandic hot spring mats. // Appl. Environ. Microbiol. 1982. V.44. P.844-851.

229.     Santegoeds C.M., Nold S.C., Ward D.M. Denaturating gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat // Appl. Envir. Microbiol. 1996. V.62. N.11. p. 3922-3928.

230.     Schauder R., Kroger A. Bacterial sulfur respiration // Arch. Microbiol. 1993. V.159. p. 491-497.

231.     Schauder R., Muller E. Polysulfide as a possible substrate for sulfur-reducing bacteria // Arch Microbiol, 1993. V.160, p.377–382 

232.     Schink B., Zeikus J.G. Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate // J. Gen. Microbiol. 1983. V.129. p.1149-1158.

233.     Skirnisdottir S., Hreggvidsson G.O., Hjorleifsdottir S., Marteinsson V.T., Petursdottir S.K., Holst O., Kristjansson J.K. Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats // Appl. Environ. Microbiol. 2000. V.66. P. 2835-2841.

234.     Skirnisdottir S., Hreggvidsson G., Holst O., Kristjansson J. Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus // Extremophiles. 2001. V. 5. P.45-51.

235.     Sievert S.M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J. Spatial heterogenity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos island (Greece) // Appl. Environ. Microbiol. 1999. V.65. p.3834-3842.

236.     Spiro B., Pentecost A. One day in the life of a stream – a diurnal inorganic carbon mass balance for a travertine-depositing stream (Waterfall beck, Yorkshire) // Geomicrobiol. J. 1991. V.9. #1. P.1-12. 

237.     Stal L. Physiological ecology of cyanobacteria in microbial mats and other communities // New Phytol. 1995. V. 131. P.1-32.

238.     Stoffers P., Glasby G.P., Stuben D., Renner R.M., Pierre T.G., Webb J., Cardile C.M. Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-Mehetia, and MacDonald hot-spot areas of the SW Pacific // Mar. Georesour. Geotechnol. 1993. V.11. p.45-89.

239.     Stookey L.L. Ferrozine – a new spectrophotometric reagent for iron // Analytical chemistry 1970. V.42. p.779-781.

240.     Svetlytshni V., Rainey F., Wiegel J. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic anaerobic organoheterotrophic alkalitolerant thermophile utilizing short- and long chain fatty acids in syntrophic co-culture with a metanogen // Int. J. Syst. Bacteriol. 1996. V.46. p.1131-1137.

241.     Takai K., Komatsu T., Inagaki F., Horikoshi K. Distribution of archaea in a black smoker chimney structure // Appl. Environ. Microbiol. 2001. V.67. p.3618-3629.

242.     Tarasov V.G., Propp M.V., Propp L.N., Zhirmunsky A.V., Namsaraev B.B., Gorlenko V.M., Starynin D.A. Shallow-water gasohydrothermal vents of Ushishir volcano and the ecosystem of Kraternaya bight (The Kurile islands) // Marine ecology. 1990. V.11(1). p.1-23.

243.     Teske A., Hinrichs K-U., Edgcomb V., Gomez A. d.V., Kysela D., Sylva S.P., Sogin M.L., Jannasch H.W. Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities // Appl. Environ. Microbiol. 2002. V.68. p.1994-2007.

244.     The Mono Basin Ecosystem. Effect of Changing Lake Level. Ed. by Mono Basin Ecosystem Study Committee Board Environmental Studies and Toxicology Commission on Physical Sciences, Mathematics, and Resources National Resources Council. National Academy Press. Washington, D.C. 1987

245.     Trewin, N.H., Knoll A.H. Preservation of Devonian chemotrophic filamentous bacteria in calcite veins // Palaios. 1999. V.14. p.288-294.

246.     Truper H.G., Schlegel H.G. Sulphur metabolism in Thiorhodaceae. I. Quantative measurements on growing cells of Chromatium okenii. //Antonie van Leeuwenhoek J. Microbiol. And Serol. 1964. V.30. №3. P. 225-238.

247.     Van de Peer Y.,  De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment // Comput. Appl. Biosci. 1994. V.10. p.569-570.

248.     Von Damm K.L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids // In S.Humphris, R. Zierenberg, L.Mullineaux, R. Thomson (ed.), Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union. Washington. D.C. 1995.

249.     Walsh M.M. Microfossils and possilble microfossils from the Early Archean Onwervaht Group, Barberton Mountain Land, South Africa // Precambr. Res. 1992. V.54. p.271-293. 

250.     Walter M.R. Archean stromatolites: evidence of the Earth’s earliest benthos. In Earth’s earliest biosphere: it’s origin and evolution / ed by J.W. Schopf. Princeton. 1983.

251.     Walter M.R. Geyserites of Yellowstone national park: an example of abiogenic “stromatolites” // In Stromatolites, Developments in sedimentology. 1976. V.20. M.R.Walter (ed.) Elsevier. Amsterdam-Oxford-New-York. P.87-112.

252.     Walter M.R., Bauld J., Brock T.D. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone national park // In Stromatolites, Developments in sedimentology. 1976. V.20. M.R.Walter (ed.) Elsevier. Amsterdam-Oxford-New-York. P.273-310.

253.     Walter M.R., McLoughlin S., Drinnan A.N., Farmer J.D. Palaeontology of Devonian thermal spring deposits, Drummond Basin, Australia // Alcheringa. 1998. V. 22. p. 285-314.

254.     Ward D.M. Thermophilic methanogenesis in a hot spring algal-bacterial mat (71-30°C) // Appl. Environ. Microbiol. 1978. V.35. P.1019-1026.

255.     Ward D.M., Beck E., Revsbech N.P., Sandbeck K.A., Winfrey M.R. Decomposition of hot spring microbial mats. // In Microbial mats: Stromatolites, 1984. P 191-214

256.     Ward D.M., Ferris M.J., Nold S.C., Bateson M.M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities // Microbiol. Mol. Biol. Rev. 1998. V. 62. p.1353-1370.

257.     Ward D.M., Weller R., Bateson M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community // Nature (London). 1990. V.344. p.63-65.

258.     Ward D.M., R. Weller, J. Shiea, R.W. Castenholz and Y. Cohen. Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance // In Y. Cohen and E. Rosenberg (ed.), Microbial mats: physiological ecology of benthic microbial communities. ASM, Washington, D.C., 1989, p. 3-15.

259.     Weller D., Doemel W., Brock T.D. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.) // Arch. Microbiol. 1975. V.104. p.7-13.

260.     Weller R.M., Bateson M.M., Heimbuch B.K., Kopczynsky E.D., Ward D.M. Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot-spring microbial mat // Appl. Envir. Microbiol. 1992. V.58. p. 3964-3969.

261.     Westall F., Marchesini D. Fossil bacteria and biofilms from the early Archaean (3.3-3.5 b.y.) Barberton and Pilbara greenstone belts: the first extremophile life on Earth and its relevance to the search for life on Mars // Abstracts of Int. Conference “Instruments, methods and missions for astrobiology V”. Moscow. PIN RAS, May 24-25. 2002. P. 99.

262.     Wickstrom C.E., Castenholz R.W. Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring // Ecology. 1985. V.66. p.1024-1041.

263.     Widdel F., Schnell S., Heising S., Ehrenreich A., Assmus B., Schink B. Ferrous iron oxidation by anoxygenic phototrophic bacteria // Nature (London). 1993. V.362. p.834-835.

264.     Wiegel J. Anaerobic alkalithermophiles, a novel group of extremophiles // Extremophiles. 1998. V.2. P. 257-267.

265.     Wiegel J., Ljungdahl L.G. Thermoanaerobacter ethanolicus gen. nov., sp. nov., a new extreme thermophilic, anaerobic bacterium // Arch. Microbiol. 1982. V.128. p.343-348.

266.     Wiegel J., Ljungdahl L.G., Rawson J.R. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulphuricum // J. Bacteriol. 1979. V.139. p.800-810.

267.     Yamamoto H., Hiraishi A., Kato K., Chiura H.X., Maki Y., Shimizu A. Phylogenetic evidence for the existence of novel thermophilic bacteria in hot-spring sulfur-turf microbial mats in Japan // Appl. Environ. Microbiol. 1998. V.64. p.1680-1687.

268.     Zeikus J.G., Ben-Bassat A., Hegge P.W. Microbiology of methanogenesis in thermal, volcanic environments // J. Bacteriol. 1977. V.143. p.432-440.

269.     Zeikus J.G., Wolfe R.S. Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile // J. Bacteriol. 1980. V.109. p.707-713.

Рекламные ссылки

аренда квартир без посредников от хозяина циан.